首页|自适应麻雀搜索算法的太阳轮故障诊断研究

自适应麻雀搜索算法的太阳轮故障诊断研究

扫码查看
大型双馈式风电机组齿轮箱的一级太阳轮由于转矩过大,极易损坏;转频过低,故障特征难以提取.为解决这一问题,基于风电机组齿轮箱太阳轮的振动信号的非平稳性与周期性,提出了一种基于麻雀搜索算法与自适应变分模态分解方法相结合,利用峭度加权来对适应度函数值求解.通过麻雀搜索算法自适应寻找变分模式分解的最优参数;采用最优参数进行变分模态分解并利用互相关系数选取模态分量;最后,对选取的分量进行包络解调,通过包络谱识别太阳轮故障.通过模拟仿真以及试验信号验证,验证了该方法的有效性与故障辨识能力.
Research on Fault Diagnosis of Sun Wheel Based on Adaptive Sparrow Search Algorithm
The first stage solar wheel of gearbox of large doubly fed wind turbine is easily damaged due to too much torque.Too low frequency conversion makes it difficult to extract fault features.In order to solve this problem,based on the non-stationarity and periodicity of vibration signal of wind turbine gearbox solar wheel,a sparrow search algorithm combined with adaptive varia-tional mode decomposition method is proposed,and the fitness function value was solved by kurticity weighting The sparrow search algorithm is used to find the optimal parameters of variational mode decomposition.the optimal parameter is used for varia-tional modal decomposition and the interrelation number is used to select the modal components.Finally,the selected components are envelope demodulated and the fault of the solar wheel is identified by envelope spectrum.The validity and fault identification ability of the proposed method are verified by simulation signals and test signals.

Sun WheelSparrow Search AlgorithmVariational Mode DecompositionFault Diagnosis

侯宇祥、陈长征

展开 >

沈阳工业大学机械工程学院,辽宁 沈阳 110870

辽宁省振动噪声控制工程技术研究中心,辽宁 沈阳 110870

太阳轮 麻雀搜索算法 变分模态分解 故障诊断

国家自然科学基金项目

51675350

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.395(1)
  • 5