首页|尾鳍驱动仿生机器鱼的CPG控制

尾鳍驱动仿生机器鱼的CPG控制

扫码查看
随着人们对海洋资源关注度的增加,对仿生机器鱼的游动性能提出更高要求,为了使机器鱼游动更贴近真实鱼的游动效果,根据Light Hill的大摆幅细长体理论的鱼体波曲线对水下仿生机器鱼的游动模式进行了研究,并采用HOPF神经元振荡器模型建立非线性振荡器模型,运用最近相邻耦合关系构建了CPG控制网络拓扑图,建立了CPG控制模型,通过调节CPG控制参数实现了机器鱼多运动模态的控制与切换.针对鲹科仿生机器鱼的游动方式进行Solid-Works三维建模,在ADAMS中进行运动仿真,并搭建实体样机.实验结果表明,采用基于HOPF的链式耦合中枢模式发生器对舵机的驱动进行控制,机器鱼尾鳍的摆动具有很好的运动柔顺性,易于实现运动模态平滑切换,游动更加灵活.这为机器鱼在海洋执行更复杂任务的研究打下了坚实基础.
Research on CPG Control of Caudal Fin Driven Bionic Robot Fish
With the increase of people's attention to marine resources,higher requirements are put forward for the swimming per-formance of bionic robotic fish.In order to make the robot fish swim closer to the swimming effect of real fish,the swimming mode of underwater bionic robotic fish was studied according to the fish body wave curve of Light Hill's large swing slender body theory,and the nonlinear oscillator model was established by using HOPF neural oscillator model.The CPG control network to-pology is constructed by using the nearest neighbor coupling relationship,and the CPG control model is established.By adjusting the CPG control parameters,the multi-mode control and switching of robotic fish are realized.According to the swimming mode of Carangidae bionic robot fish,SolidWorks 3D modeling was carried out,and the motion simulation was carried out in ADAMS,and the solid prototype was built.The experimental results show that using HOPF based chain coupling central mode generator to control the drive of the rudder,the swing of the tail fins of the robot has good motion flexibility,and it is easy to real-ize the smooth switching of the motion mode,and the swimming is more flexible.This has laid a solid foundation for the research of robotic fish to perform more complex tasks in the ocean.

Multi-Joint Robotic FishCPGHOPF OscillatorSwimming ModeMultimodal SwimmingVirtual Prototype

王洋、陈坤、袁亮

展开 >

新疆大学机械工程学院,新疆 乌鲁木齐 830047

多关节机器鱼 CPG HOPF振荡器 游动方式 多模态游动 虚拟样机

国家级大学生创新创业训练计划

202010755099

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.395(1)
  • 3