首页|发动机高速滚动轴承磨损故障信号特征识别

发动机高速滚动轴承磨损故障信号特征识别

扫码查看
发动机高速滚动轴承在恶劣的工作环境下长时间使用,会导致其出现磨损故障,严重影响发动机的正常运行,且故障类型多样,每种故障类型都有其独特的特征,使得故障信号特征识别困难.为了有效解决这一问题,提出了一种发动机高速滚动轴承磨损故障信号特征识别方法.通过对发动机高速滚动轴承的振动信号进行EEMD分解和重建,获得其固有振动模态函数IMF,根据所得的IMF构建Hankel矩阵,获得拼接的奇异值样本特征矢量.通过划分样本空间和设置迭代阈值的方式,采用模糊聚类算法对故障样本聚类,计算出每个样本在不同聚类中的隶属度,以获得其贴近程度和故障特征.通过实验证明,所提算法能够较好的判别机械故障,准确性高,误报错报概率小,可确保设备的安全运行.
Feature Recognition of Engine High-Speed Rolling Bearing Wear Fault Signals
Long term use of high-speed rolling bearings in harsh working environments can lead to wear faults,seriously affect-ing the normal operation of the engine.There are various types of faults,and each type of fault has its unique characteristics,making it difficult to identify fault signal features.To effectively solve this problem,a feature recognition method for wear fault signals of high-speed rolling bearings in engines is proposed.Through EEMD decomposition and reconstruction of the vibration signal of the high-speed rolling bearing of the engine,the natural vibration mode function IMF is obtained.Based on the ob-tained IMF,a Hankelmatrix is constructed to obtain the spliced singular value sample eigenvectors.By dividing the sample space and setting iterative thresholds,a fuzzy clustering algorithm is used to cluster fault samples,and the membership of each sample in different clusters is calculated to obtain its proximity and fault characteristics.Experimental results show that the proposed al-gorithm can better identify mechanical faults with high accuracy and low probability of false positives and false positives,ensur-ing the safe operation of equipment.

EEMD AlgorithmFCM AlgorithmEngine High-Speed Rolling BearingMechanical Failure of BearingFeature Vector Extraction

李深磊、李鹏

展开 >

郑州商学院信息与机电工程学院,河南 巩义 451200

桂林电子科技大学海洋工程学院,广西 北海 536000

EEMD算法 FCM算法 发动机高速滚动轴承 轴承机械故障 特征向量提取

郑州市2021年度社科调研课题

ZSJX20221137

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.395(1)
  • 8