首页|排球机器人机械臂关节空间轨迹自适应跟踪

排球机器人机械臂关节空间轨迹自适应跟踪

扫码查看
为了解决现有排球机器人机械臂关节空间轨迹跟踪过程中,跟踪耗时较高、受干扰影响大、跟踪误差大的问题,提出一种排球机器人机械臂关节空间轨迹自适应跟踪方法.D-H法构建排球机器人坐标系,建立排球机器人机械臂的动力学方程,获取机械臂关节之间的关系;通过牛顿下山法求解运动学逆解集,求解最短路径跟踪过程,通过样条插值函数对排球机械臂运动轨迹展开分段跟踪,利用三次样条插值建立转角函数,确定多跟踪段区间中多个节点的约束条件,实现机械臂关节空间轨迹的自适应跟踪.实验结果表明:跟踪时间始终不超过在2s,在10N/m的力矩干扰下轨迹曲线偏移较小,仅用时18s即可回归到稳定跟踪状态,对多节点跟踪的误差为(+15~-25)cm,并且在1s内就可以修正跟踪误差,跟踪效果较好.
Adaptive Tracking of Joint Space Trajectory of Volleyball Robot Robotic Arm
In order to solve the problems of high tracking time,high interference impact,and large tracking error in the joint space trajectory tracking process of existing volleyball robot robotic arms,a self-adaptive tracking method for the joint space tra-jectory of volleyball robot robotic arms is proposed.The D-H method is used to construct the coordinate system of the volleyball ro-bot,establish the dynamic model of the volleyball robot′s robotic arm,and obtain the relationship between the robotic arm joints;The Newton downhill method is used to solve the inverse solution set of kinematics,and the shortest path tracking process is solved.The trajectory of the volleyball manipulator is tracked in segments by spline interpolation function.The cubic spline interpolation is used to establish the corner function,determine the constraint conditions of multiple nodes in the multi tracking segment inter-val,and realize the adaptive tracking of the spatial trajectory of the manipulator joint.The experimental results show that The tracking time is always not more than 2s,and under the torque interference of 10N/m,the trajectory curve deviation is small.It only takes 18s to return to a stable tracking state,the error of multi-node tracking is(+15~-25)cm,and the tracking error can be corrected within1s,and the tracking effect is better.

Volleyball RobotMechanical ArmMotion TrackAdaptive TrackingKinetic Equation

夏铁牛、刘锋、李亚卫

展开 >

新疆大学体育教学研究部,新疆 乌鲁木齐 830046

排球机器人 机械臂 运动轨迹 自适应跟踪 动力学方程

新疆大学人文社会科学研究项目

校202078001

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.395(1)
  • 10