首页|机械臂环境三维重建与避障算法研究

机械臂环境三维重建与避障算法研究

扫码查看
为了解决机器人在未知环境中的避障规划难题,提出了一种基于视觉的三维重建与避障规划方法.通过深度相机(RealSense D435i)与机械臂组成手眼系统,首先,根据目标物体与ArUco码的相对关系,通过相机获取的ArUco标记上的特征点坐标,求解出目标物姿态;然后,改进三维重建方法,通过融合机械臂工具末端位姿和多帧点云数据,对环境进行较高精度的三维重建,作为后续规划的障碍空间;最后,应用了快速扩展随机树(RRT)的改进算法进行机械臂的避障运动规划.研究搭建了仿真及控制平台,来进行验证.实验表明:环境三维建模的精度维持在8mm以内,避障成功率为96.5%,平均规划时间为1.2s,验证了方法的可行性.
Research on Environmental 3D Reconstruction and Obstacle Avoidance Algorithm of Industrial Robots
Aiming at solving the problem of obstacle avoidance and motion planning for robots in unknown environments,a method of 3D reconstruction and obstacle avoidance for industrial robot arm based on visual was researched.The hand-eye sys-tem consisted of the depth camera(RealSense D435i)and the manipulator.Firstly,the posture of the target object was calculated by using the coordinate of the feature point on the ArUcomark obtained by the depth camera.Then,the3Dreconstruction method is improved.By fusing the end pose of the manipulator and multi-frame point cloud data,the environment is reconstructed with higher precision in three dimensions as the obstacle space for subsequent planning.Finally,the improved algorithm of Rapidly Expanding Random Tree(RRT)was applied to the obstacle avoidance and motion planning of the manipulator.At the same time,a simulation and control platform was built for verification.The experimental result shows that the accuracy of 3D modeling is maintained within 8mm,the success rate of obstacle avoidance is 96.5%,and the average planning time is 1.2s,which verifies the feasibility of this method.

Industrial RobotsVisual PositioningThree-Dimensional ReconstructionMotion PlanningROS

陈新度、徐学、高萌、孔德良

展开 >

广东工业大学机电工程学院,广东 广州 510006

广东工业大学省部共建精密电子制造技术与装备国家重点实验室,广东 广州 510006

佛山智能装备技术研究院,广东 佛山 528234

工业机器人 视觉定位 三维重建 避障规划 ROS

2019年佛山市核心技术攻关项目

19200010011367

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.395(1)
  • 5