首页|WEE与GA-SVM在反应堆CRDM电流故障分类中的应用

WEE与GA-SVM在反应堆CRDM电流故障分类中的应用

扫码查看
控制棒驱动机构(CRDM)的可靠性决定了反应堆的安全性,对控制棒驱动机构进行有效监测是极为必要的.针对控制棒驱动机构线圈电流变化能有效反应控制棒驱动机构运行状态的特点,在小波能量值的基础上引入滑动窗和熵值理论构建了基于小波能量熵(WEE)的线圈电流特征向量,并设计了基于支持向量机(SVM)的控制棒驱动机构电流故障分类算法,分别使用遗传算法(GA)与粒子群算法(PSO)对支持向量机的惩罚系数c和核函数参数g进行优化,较为准确地实现了对控制棒驱动机构电流故障的分类.仿真与对比结果表明:(1)相比于基于小波能量值,基于小波能量熵的特征向量更能体现线圈电流的局部特征,也更为准确地实现线圈电流故障的分类;(2)相较于粒子群算法,遗传算法作为支持向量机参数优化算法分类准确的同时,参数寻优效率更高.
Application of WEE and GA-SVM in the Classification of Reactor CRDM Current Fault
The reliability of the control rod drive mechanism(CRDM)determines the safety of the reactor,and effective monitoring of the control rod drive mechanism is extremely necessary.The coil current change can effectively reflect the operating status of the control rod drive mechanism.On the basis of wavelet energy value,the eigenvector of coil current based on wavelet energy entropy(WEE)is constructed by introducing sliding window and entropy theory,and the current fault classification algorithm of control rod drive mechanism based on support vector machine(SVM)is designed.The classification algorithm used genetic algorithm(GA)and particle swarm optimization(PSO)to optimize the penalty coefficient c and kernel function parameter g of the support vector machine,and accurately realized the classification of the current fault of the control rod drive mechanism.The results show that:(1)Compared with the wavelet energy value,the feature vector based on the wavelet energy entropy can better reflect the local char-acteristics of the coil current,and also more accurately realize the classification of the coil current fault;(2)Compared with the particle swarm optimization,genetic algorithm as a support vector machine optimization algorithm not only has accurate classifi-cation,but also has higher efficiency in parameter optimization.

CRDMCurrent MonitoringFault ClassificationWavelet Energy EntropySVMGA

徐鸣睿、朱振杰、霍孟友

展开 >

山东大学机械工程学院,山东 济南 250100

控制棒驱动机构 电流监测 故障分类 小波能量熵 支持向量机 遗传算法

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 7