首页|采用改进遗传算法的动力电池成组技术研究

采用改进遗传算法的动力电池成组技术研究

扫码查看
为提高动力电池模组一致性,综合考虑电池模组尺寸参数和电参数的一致性构建了动力电池优化成组模型,解决了现有成组技术的"不考虑尺寸参数"、"仅只聚类"、"权重分配不合理"等问题.提出了采用局部搜索的改进遗传算法对构建的模型进行优化求解,解决了传统遗传算法易陷入局部最优的问题.在相同一致性要求下,对文中提出的优化成组技术进行了实验验证,并将之与就近原则成组技术和基于传统遗传算法的成组技术进行了实验对比,结果表明文中提出的优化成组技术是三种技术中最有效的,同时这里提出的优化成组技术还可以定量地描述成组后模组内电参数的差异量,可为企业电池成组定级提供依据.
Research on Grouping of Power Battery Based on Improved Genetic Algorithm
In order to improve the consistency of power battery modules,a grouping technology of power battery was proposed.Firstly,a power battery grouping model was constructed comprehensively considering the group size parameter consistency and electrical parameter consistency,which solved the problem of existing grouping technology of"not considering size parameters","weight distribution subjecting to subjective factors"and"not giving the difference between batteries'characteristic parameters".Be-sides,an improved genetic algorithm based on local search algorithm was proposed to optimize above model in view of the short-comings that the traditional genetic algorithm was easy to fall into local optimum.Then,under the same consistency requirements,the new technology proposed in this paper had been compared with the technology based on the nearest principle and the technolo-gy based on traditional genetic algorithms,which proved that the new technology was the most effective.At the same time,the tech-nology proposed in it could also quantitatively describe the difference in electrical parameters of the modules after grouping,which could provide a basis of the modules'rating for enterprise.

Power BatteryOptimal GroupingLocal Search AlgorithmGenetic Algorithm

姜菲菲、赵凤霞、牛森涛、高建设

展开 >

郑州大学机械与动力工程学院,河南 郑州 450001

动力电池 优化成组 局部搜索 遗传算法

国家重点研发计划项目

2018YFB0104100

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 7