首页|计算机视觉的电站锅炉水冷壁缺陷检测方法

计算机视觉的电站锅炉水冷壁缺陷检测方法

扫码查看
发电厂锅炉巡检可有效避免安全事故发生,针对现场巡检过程中,锅炉水冷壁巡检区域较大,部分区域检测困难问题,开发一种基于YOLOv3模型的水冷壁缺陷检测系统.无人机携带视觉采集装置,对豫能集团某电厂锅炉水冷壁进行图像采集,画面经压缩后实时无线传输到检测末端装置,采用YOLOv3算法对水冷壁数据进行分析,对模型重要参数进行调整并做出样本增广与平衡化改进处理,提高检测效果,共测出磨损、裂缝、氧化等106处失效部位,与人工检测对比,成功率达77.9%.该方法解决了在巡检区域大、部分区域检测困难问题,使大型电站锅炉在开展水冷壁检测方面实际付出的成本得到有效缩减.
Detection Method of Water Wall Defect of Power Plant Boiler by Computer Vision
Boiler inspection of the power plant can effectively avoid safety accidents.In the process of on-site inspection,the in-spection area of the boiler water-wall is large and some areas is difficult.A water-wall defect detection system based on the YO-LOv3model is developed.The UAVcarries a visual collection device to collect images of the boiler water-wall of the Henan Yu ne-ng Company.The picture is compressed and wirelessly transmitted to the detection terminal device in real time.The YOLOV3 al-gorithm is used to analyze the data of the water-wall.Adjust the important parameters of the model and make sample enlarge-ment and balance improvement to improve the detection effect.A total of 106 failure parts such as wear,cracks,and oxidation were measured.Compared with manual detection,the success rate of failure part detection reached 77.9%.This method solves the problem of inspection difficulty in large inspection area and part of inspection area,and effectively reduces the actual cost of wa-ter wall inspection for large power plant boiler.

Power Station BoilerWater-WallUAVYOLOv3Defect Detection

王云霞、杨增阳、岳海姣、杨守波

展开 >

郑州电力高等专科学校,河南 郑州 450000

清华大学天津高端装备研究院洛阳先进制造产业研发基地,河南 洛阳 471000

电站锅炉 水冷壁 无人机 YOLOv3 缺陷检测

2019年度河南省重点研发与推广专项(科技攻关)项目

192102210305

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 5