首页|Welch功率谱与卷积神经网络结合的滚动轴承故障诊断

Welch功率谱与卷积神经网络结合的滚动轴承故障诊断

扫码查看
针对滚动轴承故障诊断在小训练样本下和强噪声下无法取得高精度识别的问题,提出一种基于Welch功率谱结合卷积神经网络进行诊断的方法.该方法以原始时域振动信号作为输入,用Welch功率谱转换数据形态同时对高强度噪声进行抑制,再用得到的功率谱训练卷积神经网络,最后将训练好的模型用于轴承的故障诊断.与WDCNN[1]等方法进行对比,实验发现在混合负载下,该方法平均识别率正确达到99%,其它方法达到这个精度至少需要20倍以上的训练样本量,明显优于WDCNN等方法.抗噪实验结果表明噪声对信号的干扰越强烈,该方法的抗噪表现越好,其抗噪性能要显著优于WDCNN等方法.
Fault Diagnosis of Rolling Bearing Based on Welch Power Spectrum with Convolution Neural Network
Aiming at the problem that the fault diagnosis of rolling bearing cannot obtain high-precision recognition under small training samples and strong noise,a diagnosis method based on Welch power spectrum combined with convolutional neural network is proposed.This method takes the original time-domain vibration signal as input,transforms the data form with Welchpower spectrum and suppresses high-intensity noise at the same time,then uses the obtained power spectrum to train the convolutional neural network,and finally uses the trained model for bearing fault diagnosis.Compared with WDCNN[1]and other methods,experiments found that under mixed load,the average recognition rate of this method is 99%correct.Oth-er methods require at least 20times the training sample size to achieve this accuracy,which is significantly better than methods such as WDCNN.The anti-noise experiment results show that the stronger the noise interference to the signal,the better the an-ti-noise performance of this method,and its anti-noise performance is significantly better than WDCNNand other methods.

Fault DiagnosisConvolutional Neural NetworkRolling BearingWelch MethodHigh Precision Identification

金志浩、张旭、张义民、张凯

展开 >

沈阳化工大学装备可靠性研究所,辽宁 沈阳 110142

故障诊断 卷积神经网络 滚动轴承 Welch功率谱 高精度识别

大型重载滚动轴承的可靠性和寿命预测的理论与方法研究—NSFC-辽宁联合基金

U1708254

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 5