首页|面向手眼标定的改进灰狼优化方法

面向手眼标定的改进灰狼优化方法

扫码查看
为解决眼在手上的机器视觉智能机器人手眼标定精度较低的问题,提出了一种改进灰狼算法的手眼标定方法.首先建立了眼在手的机器视觉智能机器人的手眼标定数学模型,通过分析影响手眼标定误差的因素,提出一种用于降低手眼标定误差的拍照位姿生成方案.然后,融合维度学习和差分进化策略,利用改进的灰狼算法对经由传统手眼标定算法求得的解析解进行非线性优化,避免了传统优化算法在迭代过程中,容易提前收敛,陷入局部最优解等缺陷.最后利用实物设备进行手眼标定实验,实验结果证明了该方法对降低手眼标定误差的可行性和有效性.
Improved Gray Wolf Optimization Method for Hand Eye Calibration
In order to solve the problem of low accuracy in Hand-Eyecalibration of machine vision intelligent robot with Eye-in-Hand,an improved gray wolf algorithm for Hand-Eye calibration is proposed.Firstly,the mathematical model of Hand-Eye calibration for Eye-in-hand machine vision intelligent robot is established.By analyzing the factors affecting the Hand-Eyecali-bration error,a pose generation scheme for reducing the Hand-Eye calibration error is proposed.Then,combining dimension learning and differential evolution strategy,the improved gray wolf algorithm is used for nonlinear optimization of the analytical solution obtained by the traditional Hand-Eye calibration algorithm,which avoids the defects of the traditional optimization al-gorithm,such as early convergence and falling into local optimal solution in the iterative process.Finally,the Hand-Eye cali-bration experiment is carried out with real equipment,and the experimental results show that the method is feasible and effective to reduce the Hand-Eyecalibration error.

Intelligent RobotHand-Eye CalibrationNonlinear OptimizationGray Wolf AlgorithmDimension-al Learning

李晟尧、肖世德、赖焕杰、胡锴沣

展开 >

西南交通大学机械工程学院,四川 成都 610031

轨道交通运维技术与装备四川省重点实验室,四川 成都 610031

智能机器人 手眼标定 非线性优化 灰狼算法 维度学习

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 1
  • 3