首页|深度学习的多目标跟踪研究进展

深度学习的多目标跟踪研究进展

扫码查看
多目标跟踪在诸多行业中具有广泛的应用前景,但也面临着目标形变、目标重叠、目标数量变化、遮挡和自遮挡以及缺少足够的标记数据等难题.由于深度学习的快速发展,使用深度学习的多目标跟踪方法迅速发展,有效的提升了多目标跟踪的性能.介绍了深度学习的多目标跟踪研究进展,并将其分为基于深度特征、基于端到端数据关联、基于单目标跟踪器扩展和联合检测跟踪的四类方法,详细说明每类方法的设计原理及其优缺点.最后,介绍了常用的数据集和评价指标并对比相关算法的性能,针对现有的多目标跟踪算法的不足,展望未来的发展趋势,以期为多目标跟踪的深入研究提供理论支持和技术指导.
Research Progress of Multi-Object Tracking in Deep Learning
Multi-object tracking has broad application prospects in many industries,but it also faces problems such as object defor-mation,object overlap,object number changes,occlusion and self-occlusion,and lack of sufficient label data.Due to the rapid de-velopment of deep learning,the rapid development of multi-object tracking methods using deep learning has effectively improved the performance of multi-object tracking.Introduced the research progress of multi-object tracking in deep learning,and divided it into four types of methods based on deep features,based on end-to-end data association,based on single-object tracker exten-sion,and joint detection and tracking,and explained in detail the design principles and advantages and disadvantages of each type of method.Finally,it introduced the commonly used data sets and evaluation indicators and compares the performance of re-lated algorithms.Aiming at the shortcomings of the existing multi-object tracking algorithms,it looked forward to the future devel-opment trend,and hoping to provide theoretical support and technical guidance for the in-depth study of multi-object tracking.

Multi-Object TrackingDeep LearningFeature ExtractionData Association

张红艳、黄宏博、何嘉玉

展开 >

北京信息科技大学计算机学院,北京 100101

北京信息科技大学计算智能研究所,北京 100192

多目标跟踪 深度学习 特征提取 数据关联

北京市教委科技计划一般项目北京信息科技大学高教研究重点项目

KM2018112320242019GJZD01

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 3