首页|轴承变工况故障的域自适应迁移深度学习诊断

轴承变工况故障的域自适应迁移深度学习诊断

扫码查看
为了实现变设备、变工况条件下的轴承故障精确识别,提出了基于域自适应迁移深度卷积神经网络的诊断方法.对于具有不同分布特征(即不同域)的训练集和测试集,在深度卷积神经网络中构造了故障特征提取模块、域识别模块、标签分类模块,以特征提取模块与域识别模块对抗训练的方式实现域自适应迁移能力,使深度卷积神经网络能够有效提取不同域的共同特征参数.使用凯斯西储大学和智能维护系统中心数据设计了4组迁移实验,传统深度卷积神经网络的识别精度均值为64.5%,域自适应迁移卷积神经网络的识别精度均值为94.9%,充分说明了域自适应迁移深度卷积神经网络能够有效识别变设备、变工况条件下的轴承故障.
Bearing Fault Diagnosis Under Variable Conditions Based on Domain Adaptive Migration Deep Learning
In order to realize accurate bearing fault identification under variable equipment and working conditions,a diagnosis method based on domain adaptive migration depth convolution neural network is proposed.For the training set and test set with different distribution features(i.e.different domains),the fault feature extraction module,domain recognition module and label classification module are constructed in the deep convolution neural network.The adaptive transfer ability of domain is realized by the way of feature extraction module and domain recognition module against training,so that the deep convolution neural net-work can effectively extract the common feature parameters of different domains.Four groups of migration experiments are de-signed based on the data of Case Western Reserve University and intelligent maintenance system center.The average recognition accuracy of traditional deep convolution neural network is 64.5%,and the average recognition accuracy of domain adaptive mi-gration convolution neural network is 94.9%,which fully shows that the domain adaptive migration deep convolution neural net-work can effectively identify bearing faults under variable equipment and working conditions.

Bearing Fault DiagnosisDomain Adaptive MigrationDeep Convolutional Neural NetworkAdver-sarial Training

牟红霞

展开 >

山东职业学院,山东 济南 250104

轴承故障诊断 域自适应迁移 深度卷积神经网络 对抗训练

山东省教育厅职业教育名师工作室支持项目

2018063

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.396(2)
  • 9