首页|遗传神经网络下机器人双头夹具参数优化研究

遗传神经网络下机器人双头夹具参数优化研究

Research on Parameter Optimization of Robot Double-Head Fixture Based on Genetic Neural Network

扫码查看
由于直角坐标机器人双头夹具动力学较为复杂,难以找到双头夹具最优参数组合,因此以直角坐标机器人为基础,提出遗传神经网络下机器人双头夹具参数优化方法.分析不同工况下双头夹具关节在夹持工件时的接触力,结合偏移量约束搭建双头夹具动力学模型.以动力学模型为基础,设置参数优化约束条件,包括竖直与水平移动距离、末端节点运行速度、夹具质量、等效应力、丝杠变形量等.结合相关约束条件,构建双头夹具参数优化目标函数,利用遗传神经网络对目标函数进行求解,获取目标函数最优解,该解即为双头夹具参数结果.经实验数据分析证明,所提方法优化后的双头夹具参数更接近于理想值,夹具灵敏度更高,能够有效提升其工作质量.
Due to the complex dynamics of the two-headed fixture of the rectangular coordinate robot,it is difficult to find the op-timal parameter combination of the two-headed fixture.Therefore,based on the rectangular coordinate robot,a parameter opti-mization of robot double-head fixture based on genetic neural network is proposed.The contact force of the double-head clamp joint in clamping the workpiece under different working conditions is analyzed,and the dynamic model of the double-head clamp is built by combining the offset constraint.Based on the dynamic model,the parameter optimization constraints are set,including the vertical and horizontal movement distance,the running speed of the end nodes,the quality of the fixture,the equivalent stress,the deformation of the lead screw,etc.Combined with relevant constraints,the objective function of double-head fixture pa-rameter optimization is constructed,and the genetic neural network is used to solve the objective function to obtain the optimal so-lution of the objective function,which is the result of double-head fixture parameter.The experimental data analysis shows that the parameters of the double-head fixture optimized by the proposed method are closer to the ideal value,and the fixture sensitivi-ty is higher,which can effectively improve its work quality.

Genetic Neural NetworkCartesian Coordinate RobotDouble-Head FixtureParameter OptimizationDynamic ModelOptimization Constraints

景兴淇、任涛、卢万里、董俊

展开 >

机械工业第六设计研究院有限公司,河南 郑州 450000

合肥工业大学,安徽 合肥 230009

遗传神经网络 直角坐标机器人 双头夹具 参数优化 动力学模型 约束条件

国家重点研发计划"网络协同制造和智能工厂"重点专项2020年度项目

2022YFB17084002022YFB1708404

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.(3)
  • 10