首页|改进教与学算法的静压推力滑动轴承优化

改进教与学算法的静压推力滑动轴承优化

扫码查看
为了使静压推力滑动轴承在运行过程中功率损失最小,提出了改进的教与学算法(DWTLBO),对静压推力滑动轴承进行优化设计.与其它经典的智能优化算法如粒子群算法(PSO)、差分进化算法(DE)和教与学算法(TLBO)相比,该算法在学习阶段引入差分进化算子增加了各组之间的交叉率,进一步提高算法的多样性和局部搜索能力,避免早熟收敛.通过建立推力轴承模型,设计了轴承阶梯半径,油槽凹口半径,润滑油粘度,润滑油流量四个设计变量,采用改进的教与学算法对模型的相关参数进行优化.优化结果表明,提出的改进算法与传统的教与学算法相比,获得模型的最优解更佳,有利于在以后的工程优化中提高模型的设计精度.
Optimization of Hydrodynamic Thrust Bearing Improved Teaching-Learning Algorithm
In order to minimize the power loss of Hydrodynamic thrust bearing during operation.An improved teaching and learn-ing algorithm(DWTLBO)is proposed to optimize the design of the thrust bearing.Compared with other classical intelligent opti-mization algorithms,such as particle swarm optimization(PSO)differential evolutionary algorithm(DE)and Teaching and Learning algorithm(TLBO),this algorithm introduces differential evolutionary operator in the learning stage to increase the crossover rate between groups,further improve the diversity of the algorithm and local search ability and avoid premature conver-gence.By establishing the thrust bearing model,four design variables including bearing step radius,oil groove recess radius,lubri-cating oil viscosity and lubricating oil flow were designed and the relevant parameters of the model were optimized by using the im-proved teaching and learning algorithm.The optimization results show that the proposed improved algorithm is better than the tra-ditional teaching and learning algorithm to obtain the optimal solution of the model,which is helpful to improve the design accu-racy of the model in the future engineering optimization.

Hydrodynamic Thrust BearingDifferential Evolution AlgorithmParticle Swarm OptimizationTeaching-Learning-Based Optimization Algorithm

张凯、赵如杰、张义民、艾巍

展开 >

沈阳化工大学装备可靠性研究所,辽宁 沈阳 110142

国网辽宁省电力有限公司锦州供电公司,辽宁 锦州 121000

静压推力滑动轴承 粒子群算法 教与学算法 差分进化算法

国家自然科学基金-辽宁联合基金

U1708254

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.398(4)
  • 10