首页|改进RBF神经网络在智能机器人轨迹规划中的研究

改进RBF神经网络在智能机器人轨迹规划中的研究

扫码查看
针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法.通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器人的轨迹.通过仿真将与未改进前的轨迹规划算法进行比较,验证该方法的优越性.结果表明,与改进前的规划算法相比,文中规划方法误差小,适应性强,能够满足工业机器人轨迹规划的预期要求.为工业机器人轨迹规划方法的发展提供了一定的参考.
Improved RBF Neural Network in the Intelligent Robot Research on Trajectory Planning
Aiming at the increasing demand of intelligent robot trajectory planning in industrial production,a trajectory plan-ning method of industrial robot combining RBF neural network and genetic algorithm was proposed based on the motion model of industrial robot.The network structure,connection weight and threshold of RBF neural network were optimized by genetic algo-rithm,and the trajectory of robot was accurately tracked.The simulation results show that the proposed method is superior to the unimproved trajectory planning algorithm.The results show that,compared with the previous improved planning algorithm,the proposed method has less error and stronger adaptability,and can meet the expected requirements of trajectory planning of indus-trial robots.It provides some reference for the development of trajectory planning method of industrial robot.

Industrial RobotTrajectory PlanningRBF Neural NetworkGenetic AlgorithmJoint Trajectory

刘翔、王开科、李菲

展开 >

四川城市职业学院,四川 成都 610110

成都理工大学,四川 成都 610059

重庆大学,重庆 400044

工业机器人 轨迹规划 RBF神经网络 遗传算法 关节轨迹

四川省教育厅自然科学研究项目

18ZB0351

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.398(4)
  • 20