首页|FPN算法在视觉感知机器人抓取控制的应用研究

FPN算法在视觉感知机器人抓取控制的应用研究

扫码查看
针对视觉感知机器人对物体抓取的准确性控制,在抓取姿势估计基础上使用密集连接的特征金字塔网络(FPN)作为特征提取器,将语义更强的高级特征图与分辨率更高的低级特征图融合,将机器人物体抓取过程分为两个阶段,第一个阶段生成待抓取区域,第二阶段对抓取区域进行细化以预测抓取姿势.模型在Cornell抓取数据集和Jacquard数据集上训练,验证了所提算法在抓取姿势估计的有效性.设计了两种不同真实场景的物体抓取控制实验,结果表明所提模型能有效提高机器人抓取各种不同尺寸物体的能力.
Research on the Application of FPN Algorithm in Grasping Control of Visual Perception Robot
Aiming at the accuracy control of object grasping by visual perception robot,on the basis of grasping pose estimation,the densely connected feature pyramid network(FPN)is used as the feature extractor to fuse the high-level feature map with stron-ger semantics and the low-level feature map with higher resolution.The grasping process of the robot human body is divided into two stages:the first stage generates the area to be grasped,and the second stage refines the grasping area to predict the grasping pose.The model is trained on Cornell and Jacquard data sets,which verifies the effectiveness of the proposed algorithm in grasp-ing pose estimation.Two kinds of real scene object grasping control experiments are designed.The results show that the proposed model can effectively improve the robot's ability to grasp objects of different sizes.

Visual RobotGrasping PostureFPNFeature Map Fusion

王利祥、郭向伟、卢明星

展开 >

河南护理职业学院公共学科部,河南 安阳 455000

河南理工大学电气工程与自动化学院,河南 焦作 454000

视觉机器人 抓取姿势 FPN 特征图融合

河南省医学教育研究项目(2022)

Wjlx2022272

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.398(4)
  • 15