首页|基于NSGA-Ⅱ的电动汽车复合制动多目标优化控制

基于NSGA-Ⅱ的电动汽车复合制动多目标优化控制

扫码查看
为了提高电动汽车制动效果,设计了一种基于NSGA-Ⅱ的电动汽车复合制动多目标优化控制策略.按照多目标优化的方式实现复合制动转矩分配并建立Pareto解集,利用改造后的理想解法实施决策确定最佳输出参数,获得与制动需求相符的转矩分配结果.设计了模糊PID控制器,并开展了控制策略转矩分配仿真分析.研究结果表明:提升制动稳定性,形成更接近Ⅰ曲线的结果.进行决策分析时,考虑车辆制动过程造成的干扰,决策获得最优参数,从而完成对转矩进行分配的过程.利用这里控制策略能够回收更高比例的制动能量,促进制动回收性能的明显提升,在较低强度制动下获得更优的制动能量回收效果,相对单独的模糊控制策略具备更优综合性能,完成预期制动力的分配.该研究对提高电动汽车复合制动效率具有很好的理论支撑价值,也可以推广到其他的车辆领域.
Multi-Objective Optimal Control of Electric Vehicle Compound Braking Based on NSGA-Ⅱ
In order to improve the braking effect of ev,a multi-objective optimal control strategy for ev compound braking based on NSGA-Ⅱ was designed.According to the multi-objective optimization method,the compound braking torque distribution was realized and the Pareto solution set was established.The optimal output parameters were determined by the modified ideal solu-tion method,and the torque distribution results consistent with the braking requirements were obtained.The fuzzy PID controller is designed and the torque distribution simulation analysis of control strategy is carried out.The results show that the braking sta-bility is improved and the result is closer to the Ⅰ curve.In the decision-making analysis,the interference caused by the braking process of the vehicle is considered to obtain the optimal parameters,so as to complete the process of torque allocation.The control strategy in this paper can recover a higher proportion of braking energy,promote the significant improvement of braking recovery performance,obtain better braking energy recovery effect under lower braking intensity,have better comprehensive performance compared with the independent fuzzy control strategy,and complete the distribution of expected braking force.This research has a good theoretical support value for improving the compound braking efficiency of electric vehicles,and can also be extended to other vehicle fields.

Electric VehicleCompound BrakeMulti-Objective OptimizationFuzzy ControlDecision Mak-ingJoint Simulation

邓璘、张俊峰、黄炳义

展开 >

马来西亚雪兰莪大学工程与生命科学学院,雪兰莪州 43100

重庆电子工程职业学院智能制造与汽车学院,重庆 401331

电动汽车 复合制动 多目标优化 模糊控制 决策 联合仿真

重庆市教委科学技术研究项目

KJQN202003114

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.399(5)
  • 16