首页|神经网络搭载Inception模块的框架结构集成故障诊断

神经网络搭载Inception模块的框架结构集成故障诊断

扫码查看
针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题.本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率和抗噪声能力更高的卷积神经网络—BICNN(Convolution Neural Network based on Inception),并用BIC-NN卷积神经网络基于数据驱动的方式,对楼体框架模型进行了集成故障诊断研究.集成诊断结果表明BICNN具有更高的识别率和较强的抗噪声能力,而且在训练步数较少的情况下振荡次数少收敛情况良好.因此采取本研究所提出的方法,对框架结构进行故障诊断时具有高诊断率和稳定性,为维护框架结构的稳定运行具有重大安全意义.
Integrated Fault Diagnosis of Frame Structure Based on Neural Network with Inception Model
In view of the bad working environment of frame structure,which is often accompanied by a lot of noise,when using ordi-nary one-dimensional convolution neural network for fault diagnosis of frame structure,it is unable to make effective fault diagno-sis.In this study,the inception module is added to a convolutional neural network with strong anti-noise ability,the recognition rate and anti-noise are obtained.Therefore,a more powerful convolution neural network named BICNN(Convolution Neural Net-work based on Inception)is raised.Based on the data-driven method,BICNN convolution neural network is used to study the inte-grated fault diagnosis of a building frame model.The integrated diagnosis results show that BICNN has higher recognition rate,stronger anti-noise ability,less oscillation times and good convergence under the condition of less training epoch.The method pro-posed in this study has high diagnosis rate and stability in fault diagnosis of frame structure,which is of great safety significance to maintain the stable operation of frame structure.

Frame StructureFault DiagnosisConvolution Neural NetworkInception ModelAnti-Noise AbilityAccuracy

蔡超志、池耀磊、郭璐彬

展开 >

河北工程大学机械与装备工程学院,河北 邯郸 056038

框架结构 故障诊断 卷积神经网络 Inception模块 抗噪声能力 正确率

河北省自然科学基金

E2020402060

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.400(6)