首页|基于特征提取和SVM分类的LED芯片缺陷快速检测与实现

基于特征提取和SVM分类的LED芯片缺陷快速检测与实现

扫码查看
针对LED芯片工业化生产中人工目检缺陷检测效率低,速度慢,易疲劳,受主观影响等问题,这里研究设计了一套LED芯片缺陷的快速检测系统,提出了一种分角度多方向快速卷积、分区统计特征量、支持向量机分类的LED芯片缺陷识别算法,基于QT和Opencv开发了一套LED芯片缺陷快速检测与分类系统,搭建LED芯片检测系统的硬件平台,实现LED芯片实时在线缺陷识别和自动分拣.基于研发的LED芯片缺陷快速检测与分拣系统样机,对LED芯片进行了缺陷分拣的测试.
LED Chip Defect Sorting System Based on Feature Extraction and SVM
Aiming at the problems of low efficiency,slow speed,fatigue,and subjective influence of manual visual inspection of defects in the industrial production of LED chips,this paper studies and designs a set of rapid detection system for LED chip de-fects,and propose an LED chip defect recognition algorithm based on multi-angle and multi-direction fast convolution,regional statistical feature quantity,and support vector machine classification.Based on QT and Opencv,a rapid detection and classifica-tion system for LED chip defects was developed,and the hardware platform for the LED chip detection system was built to realize real-time online defect recognition and automatic sorting of LED chips.Based on the developed LED chip defect sorting system prototype,the LEDchip was tested for defect sorting.

LEDSobelFeature ExtractionPCASupport Vector MachineMulti-Category

吴乾生、高健、张揽宇、郑卓鋆

展开 >

省部共建精密电子制造技术与装备国家重点实验室广东工业大学,广东 广州 510006

LED 特征量提取 PCA 支持向量机 多分类

国家自然科学基金面上项目

52075106

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.400(6)