首页|改进水平集协同FLICM的汽车零部件表面缺陷识别

改进水平集协同FLICM的汽车零部件表面缺陷识别

扫码查看
针对汽车机械零部件中检测效率低、误检率高等瓶颈问题,提出了一种结合图像处理技术的方法.基于汽车副车架表面结构复杂以及缺陷异形等特征,首先通过小波邻域收缩去噪和多尺度增强算法对零件图像进行预处理,再通过水平集函数初步定位缺陷区域,最后结合空间模糊聚类进一步精确定位缺陷区域,达到对零件表面缺陷识别的目的.对工件表面划伤、压痕、气孔三种缺陷进行检测.实验结果表明:该算法相对于其它两种算法的检测率分别93.3%、86%和90%,具有较高的检测成功率.为后续缺陷零部件分类奠定良好的基础且可以满足工业检测要求.
Surface Defect Recognition of Automobile Subframe Based on Level Set and FLICM
A method the combined with image processing technology is proposed,to meet the bottleneck problems of low detection efficiency and high error rate in automobile mechanical parts.It is due to the characteristics of complex surface structure and differ-ent defects shape to automobile subframe.Firstly,the method of the wavelet neighborhood shrinking and denoising is used to pre-treated the surface image of the vehicle subframe.Secondly,the defect area is located roughly by based on the level set function.Subsequently,the surface defect recognition will be defected further accurately by the spatial fuzzy C-means clustering.The sur-face scratch,indentation and air hole of the workpiece were detected.The experimental results show that the detection rate of this algorithm is 93.3%,86%and 90%respectively compared with the other two algorithms,and it has a high detection success rate.The purpose is to lay a good foundation for subsequent defect classification and meet the requirements of industrial inspection.

Aluminum Alloy CastingDefect DetectionImage ProcessingLevel Set

林晶、问轲、张学昌、刘永跃

展开 >

哈尔滨商业大学,黑龙江 哈尔滨 150028

浙大宁波理工学院,浙江 宁波 315100

宁波合力模具科技股份有限公司,浙江 宁波 315700

铝合金铸件 缺陷检测 图像处理 水平集

宁波市科技创新2025重大专项项目黑龙江省属高校科技成果研发项目

2019B10099TSTAU-R2018009

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.(7)
  • 10