首页|融合DeepLabV3神经网络的工件位姿检测研究

融合DeepLabV3神经网络的工件位姿检测研究

扫码查看
针对工业零件表面特征少无法使用基于特征的匹配算法以及使用传统基于模板的匹配算法在光照变化或背景混乱的场景下没有较好的鲁棒性.提出了一种基于DeepLabV3网络与传统的算法相结合的方法,极大的了提高了在复杂背景环境下的匹配结果和检测精度.首先在DeepLabV3网络下使用Hu矩和最小外接矩形法确定中心位置及旋转角度,第二步使用自适应的Harris角点检测与五点法相结合完成手眼相机的快速标定,最后在AUBO机械臂下完成定位实验,定位误差在0.5mm以内,结果表明该算法在复杂场景下和非均匀光照下有更好的表现.
Research of Workpiece Pose Estimation with DeepLabV3 Neural Network
For industrial parts with few surface features,feature-based matching algorithms cannot be used,and traditional tem-plate-based matching algorithms are not robust in scenes which are varying lighting and have chaos background.So a method based on DeepLabV3 network that combine with traditional algorithms is proposed,which greatly improves the matching results and detection accuracy in complex background.First,with the Humoment and the minimum bounding rectangle method we deter-mine the center position and rotation angle under the DeepLabV3 network.In the second step,we use the adaptive Harris corner detection combined with the five-point method to complete the rapid calibration of the hand-eye camera,and finally complete ex-periment under the AUBO robotic arm.In the positioning experiment,the positioning error is within 0.5mm,and the results show that the algorithm has better performance in complex scenes and non-uniform illumination.

Pose EstimationtHand-Eye SystemDeepLabV3

李嘉鑫、李天剑、胡欢、黄民

展开 >

北京信息科技大学机电工程学院,北京 100196

位姿检测 手眼系统 DeepLabV3

北京市科技计划项目

Z19110000141909

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.(7)
  • 4