首页|深度神经网络在AGV实时导航优化的应用研究

深度神经网络在AGV实时导航优化的应用研究

扫码查看
为提高自动导航车辆(AGV)导航控制的自主性和智能性,提出了一种基于深度神经网络(DNNS)的混合智能实时最优控制方法.将AGV轨迹运动规划的避障问题转换为非线性最优控制问题(OCP),采用平滑变换来处理路径约束,通过高斯伪谱(GPM)法来获得问题求解路径规划的最优解.在此基础上设计基于DNNS的实时最优控制器,实现AGV的最优轨迹规划.数值实验结果表明,所设计的基于DNNS的最优控制方法能够生成最优控制指令,引导AGV到达目标位置,且对初始条件具有较高的鲁棒性,能够满足不同障碍的约束条件,实现自动导引车的实时导航优化策略.
Application of Deep Neural Network in AGV Real Time Navigation Optimization
In order to improve the autonomy and intelligence of AGV navigation control,a hybrid intelligent real-time optimal control method based on deep neural network(DNNS)is proposed.The obstacle avoidance problem of AGV trajectory planning is transformed into a nonlinear optimal control problem(OCP).The smooth transformation is used to deal with the path con-straints,and the Gaussian pseudo spectral(GPM)method is used to obtain the optimal solution of the problem.On this basis,a real-time optimal controller based on DNNS is designed to realize the optimal trajectory planning of AGV.The results of numeri-cal experiments show that the optimal control method based on DNNS can generate the optimal control instructions to guide AGV to the target position,and has high robustness to the initial conditions.It can meet the constraints of different obstacles,and real-ize the real-time navigation optimization strategy of AGV.

Deep LearningNeural NetworkAGVNonlinear Optimal ControlTrajectory Planning

丁昌荣、金涛、李志军、周亮

展开 >

云南电网有限责任公司,云南 昆明 650000

深度学习 神经网络 AGV 非线性最优控制 轨迹运动规划

中国南方电网有限公司科技项目

050100KK5219001

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.402(8)