首页|针对后桥疲劳台架试验裂缝检测系统的研究

针对后桥疲劳台架试验裂缝检测系统的研究

扫码查看
针对某汽车后桥疲劳台架实验仍采用人工检测失效部位的现状,设计了一种基于机器视觉的后桥扭杆端部断裂部分的裂缝检测系统.检测系统具有记录扭杆断裂时间且在扭杆断裂时报警通知试验人员的功能.该系统通过CCD相机采集扭杆端部图像,通过Halcon开发的图像处理算法对采集到的图像进行处理.预处理后的图像使用Roberts算子、Sobel算子和Canny算子分别对裂缝边缘像素信息进行提取,对比发现Canny算子对裂缝边缘提取的效果最好.使用VS2019基于C#联合Halcon编写检测系统软件,并进行实验论证.实验表明该检测系统具有较高的准确度,可以满足试验的要求.
Research on the Crack Detection System for the Fatigue Bench Test of the Rear Axle
Aiming at the current situation that the fatigue bench test about car rear axle still uses manual inspection of the failure part,designed a cracks detection system based on machine vision to detect the broken part of the torsion bar end.The detection sys-tem had the function of recording the breaking time of the torsion bar end and informing the experimenter to shut down the equip-ment.The system collects images of the torsion bar end through a CCD camera,and then processes the images through an image processing algorithm developed by Halcon.The pre-processed image uses roberts operator,sobel operator and canny operator to extract the crack edge pixel information respectively.It is found that the canny operator has the best effect on crack edge extrac-tion.The detection system is developed by C#based on the vs 2019 and Halcon,then conduct experimental demonstrations.The experiment showed that the system has higher accuracy and meets the requirements of the experiment.

Car Rear AxleMachine VisionHalconThresholding SegmentationEdge Detection

尹波、尹辉俊、王婷婷

展开 >

广西科技大学机械与汽车工程学院,广西 柳州 545006

广西科技大学创新创业学院,广西 柳州 545006

汽车后桥 机器视觉 Halcon 阈值分割 边缘检测

广西高等学校优秀人才资助计划项目广西自然科学基金项目广西科技计划项目广西重点实验室建设资助项目广西科技大学研究生教育创新计划项目广西研究生教育创新计划项目

桂教人[2011]40号2013GXNSFAA019319桂科攻1348005-12桂财教[2013]51号13-A-01-06GKYC202109YCSW2021317

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.402(8)