首页|粉碎机齿轮箱EEMD-DWT故障信号降噪及诊断分析

粉碎机齿轮箱EEMD-DWT故障信号降噪及诊断分析

扫码查看
为了提高粉碎机齿轮箱故障诊断能力,综合运用集成经验模态(EEMD)算法和离散小波变换(DWT)的降噪技术,设计了一种通过EEMD-DWT进行降噪的新技术,确保在去除噪声的前提下可以保留有用特征.以EEMD-DWT方法降噪处理得到了光滑的信号,对信号波形的特征也实现理想复原,实现了优异降噪性能.研究结果表明:经过EEMD-DWT降噪后形成了具有明显冲击特征的波形,对幅值在零附近的噪声分量起到显著抑制效果,实现在去除噪声的条件下保留原有的振动特征.本设计的EEMD-DWT降噪方法与其它单独降噪方法相比具备更优降噪性能,能够满足粉碎机齿轮箱振动过程的实际降噪分析要求.该研究能够有效弥补EEMD在振动信号降噪方面的缺陷,提高齿轮箱的故障识别效率,也可应用到其它传动机构上,具有很高的推广价值.
Analyze on Fault Signal Denoising and Diagnosis of EEMD-DWT Gearbox of Crusher
In order to improve the fault diagnosis ability of mill gearbox,a new joint noise reduction technology through EEMD-DWT was designed by using EEMD algorithm and discrete wavelet transform denoising technology,to ensure that useful features can be fully retained on the premise of noise removal.The EEMD-DWT method is used to reduce the noise and obtain smooth sig-nals,and the characteristics of signal waveform can be restored ideally,achieving excellent noise reduction performance.The re-sults show that the waveform with obvious impact characteristics is formed after EEMD-DWT noise reduction,which plays a sig-nificant suppression effect on the noise component with amplitude near zero,and fully retains the original vibration characteris-tics under the condition of noise removal.Compared with other separate noise reduction methods,the EEMD-DWT noise reduc-tion method designed in this paper has better noise reduction performance and can meet the actual noise reduction analysis re-quirements of mill gearbox vibration process.This research can effectively make up for the defects of EEMD in vibration signal noise reduction,improve the fault identification efficiency of gear box,and can also be applied to other transmission mecha-nisms,which has high popularization value.

Grinding MachineSignal Noise ReductionFault DiagnosisIntegrated Empirical ModesDiscrete Wavelet Transform

孙畅、刘英明、商微微、刘强

展开 >

长春汽车工业高等专科学校电气工程学院,吉林 长春 130013

长春大学电子信息工程学院,吉林 长春 130022

长春市中誉齿轮有限公司,吉林 长春 130022

粉碎机 信号降噪 故障诊断 集成经验模态 离散小波变换

吉林省高教科研项目

JGJX2020D633

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.402(8)