首页|基于ALIF-MPE-SVM组合算法的电机轴承早期故障诊断

基于ALIF-MPE-SVM组合算法的电机轴承早期故障诊断

扫码查看
为了提高电机用轴承的安全运行稳定效率,通过ALIF算法自适应分解非平稳信号,再以MPE从IMFs中提取出非线性故障信号,将MPE降维处理后的故障特征量利用MPE-SVM思想智能故障的诊断功能,开发得到一种MPE-SVM故障诊断技术,再根据测试得到的电机轴承故障参数完成算法有效性验证.研究结果表明:大部分故障信息都出现于最初的三个IMF内,主成分比例超过80%,因此以前3个主成分作为特征量并将其代入MPE-SVM内实施训练.各组别都可以对故障损伤的准确识别,表明以MPE作为故障特征能够满足有效性要求.ALIF-MPE具备比EMD-MPE更优的分类性能,达到了较低的标准差,稳定的分类状态.该研究能够准确识别电机轴承不同故障程度,对提高同类机械传动设备的故障诊断水平具有很好的理论支撑意义.
Early Fault Diagnosis of Motor Bearing Based on ALIF-MPE-SVM Combined Algorithm
In order to improve the safe operation and stability efficiency of motor bearings,non-stationary signals were decom-posed adaptively by ALIF algorithm,and nonlinear fault signals were extracted from IMFs by MPE.The fault feature values af-ter dimensionality reduction of MPE were used to develop a mPE-SVM fault diagnosis technology.Then the validity of the algo-rithm is verified according to the motor bearing fault parameters obtained by the test.The results show that most of the fault infor-mation occurs in the first three IMF,and the proportion of principal components exceeds 80% .Therefore,the former three princi-pal components are used as characteristic quantities and substituted into MPE-SVM for training.Each group can accurately identify the fault damage,indicating that MPE as fault feature can meet the requirements of effectiveness.Alif-mpe has better classification performance than EMD-MPE,with lower standard deviation and stable classification state.This research can accu-rately identify different fault degrees of motor bearings,which has a good theoretical support for improving the fault diagnosis level of similar mechanical transmission equipment.

BearingFault DiagnosisSupport Vector MachineInformation FusionFeature Extraction

高美真、李丽、高烨童、薛涛

展开 >

焦作师范高等专科学校信息工程学院,河南 焦作 454000

西安理工大学计算机与信息工程学院,陕西 西安 710061

轴承 故障诊断 支持向量机 信息融合 特征提取

河南省高等学校重点科研项目

18B170004

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.402(8)