首页|多特征融合目标跟踪算法研究

多特征融合目标跟踪算法研究

扫码查看
针对目标跟踪过程出现的遮挡、目标形变、复杂场景等挑战,提出了一种结合记忆机制的精确度较高的视觉目标跟踪算法.该算法首先对目标初始化,提取目标的HOG特征、纹理特征以及CN特征构建特征模型,弥补了单一特征可能造成跟踪不准确的问题.然后将模型和构建的滤波器进行相关滤波操作得到目标搜索区域的最大的响应位置,在后续的视频帧中采用包含了瞬时、短时、长时记忆空间的三层旋转圆记忆模型对目标模板进行更新,有效的增强了算法的跟踪能力.最后在OTB50、TC128、OTB100实验基准数据集上表明,与提到的KCF、DCF_SC、MOSSE_CA、SAMF_AT、STAPLE_CA算法进行对比,该算法在精度和准确度方面提高了,能够较准确的对目标进行跟踪,在目标跟踪领域具有重要的研究价值.
Research on Multi-Feature Fusion Target Tracking Algorithm
Aiming at the challenges of occlusion,target deformation,complex scenes and other challenges in the target tracking process,a high-precision visual target tracking algorithm combined with a memory mechanism is proposed.The algorithm first initializes the target and extracts the target's HOG feature and texture features and CN features construct a feature model to make up for the inaccurate tracking problem caused by a single feature.Perform related filtering operations on the model and the con-structed filter to obtain the maximum response position of the target search area.In the subsequent video frames,a three-layer ro-tating circle memory model containing instantaneous,short-term and long-term memory spaces is used to perform the target tem-plate.The update effectively enhances the tracking ability of the algorithm.The OTB50,TC128,OTB100 experimental bench-mark data set shows that compared with other algorithms mentioned in the article,this algorithm can track the target more accu-rately,which has important research value.

Computer VisionTarget TrackingCorrelation FilteringMemory ModelMulti-Feature FusionTemplate Update

任红格、崔胤、史涛

展开 >

华北理工大学电气工程学院,河北 唐山 063210

天津理工大学电气与电子工程学院,天津 300384

计算机视觉 目标跟踪 相关滤波 记忆模型 多特征融合 模板更新

河北省自然科学基金国家自然科学基金

F201820928961203343

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.402(8)