首页|车削加工随机切削力建模与预测研究

车削加工随机切削力建模与预测研究

扫码查看
针对车削材料的非均匀性和多模态加工系统等实际加工条件,提出了一种预测随机切削力的模型.将确定性模型中的常数切削系数转化为平稳的高斯过程,采用随机模型对刀具振动和未切削切屑厚度进行了建模.通过实验估计了随机切削系数,并在任意时间尺度下利用随机微分方程进行有效模拟.结合随机模型与多模态动力学方程,对随机切削力进行了数值预测.为此建立了三模态加工系统,并对不同金属合金的工件进行了测试.结果表明估计的随机切削系数对切削参数不敏感,预测结果与实验结果在时域和统计域上具有较好的吻合性.在切削力无法在线测量的情况下,该模型可为刀具状态监测提供参考.
Research on Modeling and Prediction of Random Cutting Forces in Turning
Aiming at the non-uniformity of turning materials and actual machining conditions such as multi-mode machining systems,a model for predicting random cutting forces is proposed.The constant cutting coefficient in the deterministic model was transformed into a stationary Gaussian process,and the tool vibration and uncut chip thickness were modeled using a stochastic model.The stochastic cutting coefficients are estimated experimentally and effectively simulated using stochastic differential equa-tions at arbitrary time scales.Combining the stochastic model with the multimodal dynamic equation,the numerical prediction of the stochastic cutting force is carried out.To this end,a three-modal machining system was established and tested on workpieces with different metal alloys.The results show that the estimated random cutting coefficient is not sensitive to cutting parameters,and the predicted results are in good agreement with the experimental results in the time and statistical domains.In the case where cutting force cannot be measured online,the model can provide a reference for tool condition monitoring.

Random Cutting ForceStationary Gaussian ProcessCutting CoefficientTurning

刘涛、张亚利

展开 >

新乡职业技术学院,河南 新乡 453000

广东工业大学机电工程学院,广东 广州 510006

随机切削力 平稳高斯过程 切削系数 车削加工

2021年产学合作协同育人项目

21A690029

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.403(9)
  • 13