首页|面向矿井提升机制动系统的SAE故障诊断方法

面向矿井提升机制动系统的SAE故障诊断方法

SAE Fault Diagnosis Method for Mine Hoist Brake System

扫码查看
为了更充分地利用矿井提升机在运转过程中的监测数据,对制动系统进行精确诊断,提出了一种基于稀疏自动编码器(SAE)的故障诊断方法.通过模拟故障试验,获取故障数据,经标准化处理后生成训练集和测试集.并加入Dropout正则化方法对故障诊断模型进行了优化,根据训练结果采用梯度下降法优化模型参数.最后使用测试数据集对优化前后的诊断模型进行对比试验.结果表明,文中提出的提升机故障诊断方法,减少了过拟合现象,降低了获取标签数据的工作量,故障类型的平均分类精度能够达到96%.此方法使用提升机的监测数据,减少人为的影响,可以对矿井提升机的故障进行准确诊断.
In order to make full use of the monitoring data of the mine hoist during operation and accurately diagnose the brake system,a fault diagnosis method based on Sparse Auto-Encoder(SAE)is proposed.Through the simulated failure test,the failure data is obtained,and the training set and the test set are generated after standardized processing.And add the Dropout regulariza-tion method to optimize the fault diagnosis model,and use the gradient descent method to optimize the model parameters accord-ing to the training results.Finally,the test data set is used to compare the diagnosis model before and after optimization.The re-sults show that the hoist fault diagnosis method proposed in this paper reduces the over-fitting phenomenon and the workload of obtaining label data,and the average classification accuracy of fault types can reach 96%.This method uses the monitoring data of the hoist for diagnosis,without subjective intervention of personnel,and can accurately diagnose the fault of the mine hoist.

Fault DiagnosisSAEDropoutBrake SystemMine Hoist

闫方元、李娟莉、苗栋

展开 >

太原理工大学机械与运载工程学院,山西 太原 030024

煤矿综采装备山西省重点实验室,山西 太原 030024

故障诊断 SAE Dropout 制动系统 矿井提升机

山西省自然科学基金面上项目山西省回国留学人员科研资助项目

201901D1110562020-034

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.403(9)
  • 8