首页|小波包和1D CNN结合的刀具磨损状态识别

小波包和1D CNN结合的刀具磨损状态识别

扫码查看
为监测机床切削加工过程中刀具的非线性磨损变化,提出了一种基于小波包分解和一维卷积神经网络(1D CNN)的刀具磨损状态识别方法.采集机床主轴振动数据作为监测信号,采用经信噪比定量分析后的小波包进行预处理,然后选取小波包分解后各频带的能量特征作为1D CNN的输入,实现了对刀具磨损状态的有效识别.实验表明,该模型能够实现刀具磨损状态的准确预测,相比于BP网络、能量频谱图-Alexnet和Lstm网络模型,刀具磨损状态识别率最优,平均准确率达到98.262%.
Tool Wear Status Recognition Based on Wavelet Packet and 1D CNN
In order to monitor the non-linear wear changes of the tool during the cutting process of machine tools,a tool wear sta-tus recognition method based on wavelet packet decomposition and one-dimensional convolutional neural network(1D CNN)is proposed.The vibration data of machine tool spindle are collected as monitoring signals,and the wavelet packet after quantitative analysis of the signal-to-noise ratio is used for data preprocessing.Then the energy characteristics of each frequency band after the wavelet packet decomposition are selected as the input of 1D CNN to realizes effective identification of the tool wear status.Ex-perimental results show that the model can accurately prediction the tool wear status.Compared with BP network,energy spectrogram-Alexnet and Lstm network models,the recognition rate of tool wear status is the best,with an average accuracy rate of98.262%.

Tool WearVibration SignalWavelet Packet DecompositionConvolutional Neural Network

杨斌、樊志刚、王建国、刘文婧

展开 >

内蒙古科技大学机械工程学院,内蒙古 包头 014010

内蒙古自治区机电系统智能诊断与控制重点实验室,内蒙古 包头 014010

刀具磨损 振动信号 小波包分解 卷积神经网络

内蒙古自治区高等学校科学研究项目

NJZY21380

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.403(9)
  • 9