首页|机器学习时延感知的无人机操作模式识别

机器学习时延感知的无人机操作模式识别

扫码查看
考虑到加密WIFI流量下的时延特征与实时性要求,提出了一种机器学习的时延感知无人机操作模式识别方法.首先提出的机器学习框架将加密数据流视为一个时间序列,利用重新加权的l1范数正则化将特征选择和性能优化集成为期望总代价函数,该函数综合了误分类/误检测和延迟代价.另外为了解决在估计时延代价函数时数据包到达时间的不确定性,使用最大似然估计得到数据包到达时间.最后利用私人无人机真实WIFI数据流量对提出的方法的性能进行了评估,评估结果证明了提出方法的有效性.
Time Delay Aware UAV Operation Pattern Recognition Based on Machine Learnin
Considering the delay characteristics and real-time requirements of encrypted WIFI traffic,a time-delay aware UAV operation pattern recognition method based on machine learning was proposed.Firstly,the proposed machine learning framework regards the encrypted data stream was taken as a time series,and the reweighted l1 norm regularization was used to set the feature se-lection and performance optimization into the expected total cost function,which integrated the misclassification/false detection and delay cost.In addition,in order to solve the uncertainty of packet arrival time when estimating the delay cost function,the max-imum likelihood estimation was used to obtain the packet arrival time.Finally,the performance of the proposed method is evaluat-ed by using the real WIFI data flow of private UAV,and the evaluation results show the effectiveness of the proposed method.

WIFI TrafficUAVOperation Mode IdentificationMachine Learning

罗丽霞、常金勇、许颖聪

展开 >

临汾职业技术学院,山西 临汾 041000

西安建筑科技大学,陕西 西安 710055

华北电力大学,河北 保定 071000

WIFI流量 无人机 操作模式识别 机器学习

2022年陕西省科技厅自然科学基金项目

2022JM-365

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.404(10)
  • 12