首页|动力电池-超级电容混动车辆能量管理研究

动力电池-超级电容混动车辆能量管理研究

扫码查看
由于混合动力客车具有长行驶里程、高负荷承载等运行特点,设计合理的能量管理策略以降低系统的整体能量损失对整车的节能运营具有重要意义.这里基于一种深度强化学习方法(即深度确定性策略梯度算法),设计了面向动力电池-超级电容的混合动力客车最优能量管理策略,较传统的强化学习控制策略相比,所提出的策略通过引入神经网络,避免了求解过程中对连续状态和动作变量的离散化,提高了控制精度.另外,通过利用动态规划算法预先求解最优控制策略,并将策略经验纳入经验池,使后续网络参数训练时能根据最优经验较快获得最佳网络参数,加速了网络的收敛速度,提高了控制策略的最优性.结果表明,所提出的控制策略较传统的Q-learning算法,可实现系统整体能耗下降10.3%;与基于动态规划的最优控制策略相比,能耗仅增加2.05%,证明了所提出控制策略的最优性.
Energy Management Strategy for Hybrid Electric Vehicle Integrating Ultra-Capacitor and Power Battery
As hybrid electric bus has the characteristics of long mileage and heavy load,it is of great significance to design a reason-able energy management strategy to reduce the overall energy loss of the system.In this paper,an optimal energy management strate-gy for hybrid electric bus,whose power system integrates power battery and ultra-capacitor,is designed based on a deep reinforce-ment learning method,namely deep deterministic policy gradient.Compared with the traditional reinforcement learning control strat-egy,the proposed strategy avoids the discretization of continuous state and action variables in the solution process by introducing neu-ral network,and improves the control accuracy.In addition,dynamic programming algorithm is used to solve the optimal control strategy in advance,and the strategy experience is included in the experience pool,so that the optimal network parameters can be ob-tained quickly according to the optimal experience in the subsequent network parameter training,which accelerates the convergence speed of the network and improves the optimality of the control strategy.The results show that the proposed control strategy can reduce the overall energy consumption by 10.3%compared with the traditional Q-learning algorithm;Compared with the optimal control strategy based on dynamic programming,the energy consumption is only increased by 2.05%,which proves the optimality of the pro-posed control strategy.

Hybrid Electric VehicleUltra-CapacitorPower BatteryEnergy ManagementReinforcement Learning

唐香蕉、赵奕凡

展开 >

上汽通用五菱汽车股份有限公司,广西柳州 545000

混合动力汽车 超级电容 动力电池 能量管理 强化学习

柳州市科技计划

2020GAAA0401

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.404(10)