首页|基于PCA-LSTM的轧制过程故障诊断

基于PCA-LSTM的轧制过程故障诊断

扫码查看
针对精轧部分辊缝控制执行器失效和冷却水阀故障难以诊断,且轧制过程具有数据结构复杂、前后时刻有影响、非线性强等特性,提出了基于PCA-LSTM的轧制故障诊断模型.使用主成分分析(PCA)提取精轧部分关键特征,提高了轧制过程网络训练时的迭代速度,降低了 LSTM网络的输入维度和预测难度.将提取后的特征数据作为LSTM网络的输入,将故障类别作为输出,使用PCA-LSTM故障诊断模型对两类故障进行诊断.通过比较PCA-LSTM、LSRM、BP神经网络诊断结果表明,采用PCA-LSTM诊断模型后的数据训练网络迭代速度更快,且诊断正确率超过99%,诊断效果优于普通LSTM和BP神经网络.
Rolling Process Failure Diagnosis Based on PCA-LSTM Neural Network
Aiming on the failure and the failure of cooling water valve,the complex data structure,influence and nonlinear char-acteristics.The extraction of the main component analysis(PCA)improves the iteration speed during the rolling process network training and reduces the input dimension and prediction difficulty of the LSTM network.Use the extracted feature data as the in-put to the LSTM network and the fault category as the output.Diagnosis of two types of faults using the PCA-LSTM troubleshoot-ing model.Comparing the diagnostic results of PCA-LSTM、LSRM、BP neural networks shows that the data training network iter-ation after using the PCA-LSTM diagnostic model is faster and the diagnostic accuracy exceeds 99%,with better diagnostic ef-fect over ordinary LSTM and BP neural networks.

LSTMMain Component AnalysisRolling ProcessFault Diagnosis

张瑞成、许阳、梁卫征

展开 >

华北理工大学电气工程学院,河北唐山 063210

LSTM 主成分分析 轧制过程 故障诊断

河北省自然科学基金

F2018209201

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.404(10)
  • 6