首页|非平坦地形下移动机器人位姿精准估计研究

非平坦地形下移动机器人位姿精准估计研究

扫码查看
非平坦地形上移动机器人的姿态和运动变得更加复杂和多样化,导致机器人位姿估计精准度和效率降低,为此提出非平坦地形下移动机器人位姿精准估计方法.根据移动机器人的运动特性和约束条件获取运动学函数,将该函数输入Ma-hony 算法,得到粗略的姿态估计值.将姿态估计值和里程计观测数据作为EKF算法的初始参数,通过滤波和融合处理进行位姿估计,结合PL-ICP点云匹配方法进一步更新位姿估计结果.将更新后的位姿估计作为EKF算法的先验估计,并与其他传感器数据进行融合,得到初步位姿估计结果.将初步位姿估计结果作为果蝇优化算法的优化目标,获取更加精准的移动机器人位姿估计结果.实验结果表明:所提方法能够在确保移动机器人稳定运行的基础上,有效提高其位姿估计的精准度和效率,取得了较好的应用效果.
Research on Accurate Estimation of Mobile Robot Posture in Unflat Terrain
The pose and motion of mobile robots on uneven terrain have become more complex and diverse,leading to a decrease in the accuracy and efficiency of robot pose estimation.Therefore,an accurate estimation method of mobile robot posture in unflat ter-rain is proposed.The kinematic function is obtained according to the motion characteristics and constraints of the mobile robot,which is input into the Mahony algorithm to get a rough attitude estimate.The pose estimation and odometer observation data are taken as the initial parameters of the EKF algorithm,and the pose estimation is performed by filtering and fusion processing.The PL-ICP point cloud matching method is combined to further update the pose estimation results.The updated pose estimation is used as the prior estimation of EKF algorithm and fused with other sensor data to obtain the preliminary pose estimation results.The pre-liminary pose estimation results are used as the optimization target of fruit fly optimization algorithm to obtain more accurate pose es-timation results of mobile robot.The experimental results show that the proposed method can effectively improve the accuracy and effi-ciency of pose estimation on the basis of ensuring the stable operation of the mobile robot,and obtain a good application effect.

Mobile RobotsKinematic FunctionPose EstimationEKF AlgorithmPL-ICP Point Cloud Matching MethodFruit Fly Optimization Algorithm

董作峰、叶玉刚、郑宪秋、秦冬冬

展开 >

山西工程技术学院创新创业学院,山西阳泉 045000

桂林电子科技大学计算机与信息安全学院,广西桂林 541004

移动机器人 运动学函数 位姿估计 EKF算法 PL-ICP点云匹配方法 果蝇优化算法

国家自然科学基金青年基金项目阳泉市重点研发计划阳泉市重点研发计划

521041402020YF0472020YF036

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.404(10)