首页|融合物联网技术的深度置信网络轧机AGC故障诊断研究

融合物联网技术的深度置信网络轧机AGC故障诊断研究

扫码查看
厚度控制是决定钢铁产品质量的重要因素,轧机AGC液压系统的各种性能和状态对目标的轧制质量有很大影响.采用基于物联网的深度置信网络的故障诊断方法,用物联网智能控制作为平台,利用无线传感网络技术对各类数据进行实施测控以及远程共享,把采集到的故障信号输入深度置信网络模型,对样本数据进行训练,通过实验仿真准确诊断出故障.经过实验,深度置信网络模型可以适用于轧机AGC这种复杂的系统,保证系统的正常运行,降低设备故障率的同时提高生产效率.
Research on AGC Fault Diagnosis of Rolling Mill Based on Deep Confidence Network and Internet of Things Technology
Thickness control is an important factor in determining the quality of steel products,and the performance and status of the mill AGC hydraulic system have a great impact on the quality of the rolling of the target.Using the fault diagnosis method of deep confidence network based on Internet of Things,using the intelligent control of Internet of Things as a platform,using wire-less sensing network technology to carry out measurement and control of all kinds of data and remote sharing,the collected fault signal input depth confidence network model,training the sample data,and accurately diagnosing the fault through experimen-tal simulation.After experiments,the deep confidence network model can be applied to the complex system such as mill AGC,which can ensure the normal operation of the system and reduce the failure rate of equipment while improving production effi-ciency.

Hydraulic AGCInternet of ThingsDeep Confidence NetworkFault DiagnosisRolling QualityIn-telligent Control

朱可龙、孙晔、孙洁、刘晓悦

展开 >

华北理工大学电气工程学院,河北 唐山 063200

中国信息通信研究院,北京 100191

液压AGC 物联网 深度置信网络 故障诊断 轧制质量 智能控制

河北省自然科学基金

E2019209492

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.404(10)
  • 11