首页|基于GA-PNN网络的滚动轴承故障诊断方法

基于GA-PNN网络的滚动轴承故障诊断方法

扫码查看
针对滚动轴承故障诊断问题,提出遗传算法优化概率神经网络(GA-PNN)的诊断方法.首先,用遗传算法优化PNN网络中的散布常数.其次,从实验室采集到内环故障和正常状态下的滚动轴承振动信号,考虑到采集系统等存在缺陷因素,采用最小二乘法和指数平滑法消除振动信号中的漂移和微弱噪声.随后,提取多个时域特征参数,并根据参与建立诊断模型的输入变量不同而建立起6个不同模型.最后,利用GA-PNN和PNN对6个模型进行诊断并综合分析.研究结果表明:GA-PNN对6个模型的诊断效果均能达到95%以上,而PNN由于散布常数设置问题导致诊断结果差异较大;散布常数和输入变量均会影响PNN的诊断效果;从校验集收敛误差、测试集诊断准确率等角度出发,GA-PNN相比PNN更适宜滚动轴承故障诊断.
Fault Diagnosis Method of Rolling Bearing Based on GA-PNN Network
A genetic algorithm(GA)optimization probabilistic neural network(PNN)diagnosis method(GA-PNN)is proposed to address the fault diagnosis problem of rolling bearing.Firstly,GA was used to optimize the diffusion constants in PNN net-works.Secondly,the vibration signals of rolling bearing under inner ring fault and normal condition were collected from the labo-ratory.Considering the defects of the acquisition system,the least square method(LMS)and exponential smoothing method were used to eliminate the drift and weak noise in the vibration signals.Thirdly,several time-domain feature parameters were extract-ed,and six different models were established according to the input variables involved in the establishment of the diagnosis model.Finally,six models were diagnosed and comprehensively analyzed by GA-PNN and PNN diagnosis model.The results show that GA-PNN can achieve more than 95%for the diagnosis of 6 models.However,PNN has a large difference in diagnosis results due to the setting of the diffusion constants.Besides,the diffusion constants and input variables will affect the diagnostic results of PNN.Therefore,from the perspectives of convergence error and test set diagnostic accuracy,GA-PNN is more suitable for rolling bearing fault diagnosis than PNN.

Rolling BearingFault DiagnosisProbabilistic Neural NetworkGenetic AlgorithmLeast SquaresEx-ponential Smoothing

皮骏、刘鹏、胡超

展开 >

中国民航大学通航学院,天津 300300

江苏航空职业技术学院航空工程学院,江苏镇江 212134

滚动轴承 故障诊断 概率神经网络 遗传算法 最小二乘法 指数平滑法

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)