首页|改进蜉蝣优化算法在圆度误差评定中的应用

改进蜉蝣优化算法在圆度误差评定中的应用

扫码查看
现代工业生产中,圆度误差在检验和评定零件生产质量方面有重要的参考价值.因此提出了一种改进蜉蝣优化算法(Modified Mayfly Optimization Algorithm,MMOA)用于弥补传统误差评定方法的不足即收敛速度慢和准确度低.该改进蜉蝣优化算法依据最小区域法的计算公式建立数学模型作为适应度评判标准.并针对基本蜉蝣优化算法(Mayfly Optimiza-tion Algorithm,MOA)的不足,通过引入柯西分布变异函数更新全局最优蜉蝣个体位置以及引入非线性自适应参数作为全体蜉蝣位置更新公式的惯性权重.并且在迭代过程中融合模拟退火算法使得个体受局部极值点约束力下降,提升算法的局部寻优能力和鲁棒性.最后为了证明MMOA的改进效果,进行了仿真实验.实验表明MMOA可以有效、正确地评价圆度误差且评定精度优于遗传算法、粒子群算法,在求解质量和稳定性上优于MOA,这为圆度误差评定问题提供了新的方法.
Improved Mayfly Optimization Algorithm and its Application in Roundness Error Evaluation
In modern industrial production,roundness error has important reference value in inspecting and evaluating the pro-duction quality of parts.Therefore,an improved mayfly optimization algorithm(MMOA)is proposed to make up for the shortcom-ings of traditional error evaluation methods,that is,slow convergence speed and low accuracy.The improved mayfly optimiza-tion algorithm establishes a mathematical model according to the calculation formula of the minimum region method as the fit-ness evaluation standard.Aiming at the shortcomings of the basic mayfly optimization algorithm(MOA),the Cauchy distribu-tion variation function is introduced to update the global optimal mayfly individual position,and the nonlinear adaptive parame-ter is introduced as the inertia weight of the position update formula of all mayflies.In the iterative process,the simulated anneal-ing algorithm is integrated to reduce the binding force of individuals by local extreme points,and improve the local optimization ability and robustness of the algorithm.Finally,in order to prove the improvement effect of MMOA,simulation experiments are carried out.Experiments show that MMOA can effectively and correctly evaluate roundness error,and the evaluation accuracy is better than genetic algorithm and particle swarm optimization algorithm,and better than MO A in solution quality and stability,which provides a new method for roundness error evaluation.

AdaptiveCauchy DistributionSimulated AnnealingRoundness ErrorMayfly Optimization Algor-ithm

李婧妍、莫愿斌

展开 >

广西民族大学人工智能学院,广西南宁 530006

广西民族大学广西混杂计算与集成电路设计分析重点实验室,广西南宁 530006

自适应 柯西分布 模拟退火 圆度误差 蜉蝣优化算法

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)