首页|改进粒子群算法在可靠性分析中的应用

改进粒子群算法在可靠性分析中的应用

扫码查看
对于高非线性问题中,单一种群的粒子群算法(PSO)收敛速度较慢、种群多样性容易丢失、容易陷入局部最优解的情况,提出了一种多种群自适应交互学习改进粒子群算法(MAILPSO).该算法将整个族群分为多个不同的种群,分别执行不同的策略,并在种群间相互学习,以兼顾全局搜索能力和局部收敛能力.典型功能函数的仿真结果证明,该算法有着更强的收敛能力和更高的收敛精度.最后将MAILPSO算法应用于房屋屋梁可靠性指标的评估中,以此证明方法的实用性.
Application of Improved Particle Swarm Optimization Algorithm in Reliability Analysis
For highly nonlinear problems,single-species particle swarm optimization(PSO)is easy to lose its diversity and get into the local optimal solution,a multi-population adaptive interactive learning improved particle swarm optimization(MAILP-SO)is proposed.The algorithm divides the whole population into several different populations,implements different strategies,and learns from each other among the populations to take into account the global search ability and the local convergence ability.The simulation results of typical functions show that the algorithm has stronger convergence ability and higher convergence preci-sion.Finally,MAILPSO is applied to evaluate the reliability index of building beam to prove the practicability of the method.

Particle Swarm OptimizationInteractive LearningAdaptiveMulti-StrategyReliability Evaluation

高淑芝、赵匀琨、张义民

展开 >

沈阳化工大学装备可靠性研究所,辽宁沈阳 110142

沈阳化工大学信息工程学院,辽宁沈阳 110142

粒子群优化 交互式学习 自适应 多策略 可靠性评价

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)