首页|高斯过程改进自适应神经网络的机床力学修正模型

高斯过程改进自适应神经网络的机床力学修正模型

扫码查看
机床基础严重影响机床的动力学特性,由于建立机床-基础系统模型需要精准的材料属性参数,为此利用高斯过程推理能力强、计算效率快的优点,提出一种基于高斯过程改进的自适应神经网络模型,通过设计核函数,将高斯过程对神经网络的结构和训练步骤进行改进.基于改进的神经网络模型,以前三阶固有频率作为输入,以机床和基础材料属性作为输出建立机床-基础系统力学修正模型,通过实验值和仿真值对比验证了提出模型的准确度,为机床的设计提供理论基础.
Machine Tool Mechanics Correction Model Based on Gaussian Process Assisted Neural Network
Machine tool foundation has a serious impact on the dynamic characteristics of machine tool.Because the establish-ment of machine tool foundation system model needs accurate material property parameters,this paper proposes an adaptive neu-ral network model based on Gaussian process improvement,which takes advantage of the strong reasoning ability and fast calcu-lation efficiency of Gaussian process.The structure and training steps of neural network are improved by Gauissian process.Based on the improved neural network model,the former three natural frequencies are used as inputs,and the machine tool and founda-tion material properties are used as outputs to establish the mechanical correction model of the machine tool foundation system.The accuracy of the proposed model is verified by comparing the experimental and simulation values,which provides a theoretical basis for the design of machine tools.

Machine ToolFoundationGaussian ProcessNeural NetworkCorrection Model

韩雪、田杨

展开 >

辽宁工程职业学院机械工程系,辽宁铁岭 112008

沈阳理工大学机械工程学院,辽宁沈阳 110159

机床 基础 高斯过程 神经网络 修正模型

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)