首页|复杂环境中改进RRT算法的路径规划研究

复杂环境中改进RRT算法的路径规划研究

扫码查看
针对传统快速搜索随机树(RRT)算法在复杂环境中路径规划存在冗余节点过多以及规划成功率低等问题.本文提出一种基于入口检测策略以及启发式动态圆采样策略相结合的改进RRT路径规划算法ED-RRT.首先,该算法提出范围寻找策略,在存在复杂环境中快速寻找到可以通行路径.同时采用启发式策略,优化随机点的选取,加快有效规划速度,减少冗余分支的产生.其次,该算法引入贪婪算法来优化路径,解决冗余点过多的问题.仿真实验表明,本文所提算法相对于传统RRT算法和bias-RRT算法,在迭代时间、迭代次数、路径长度、路径规划等方面有着明显的优势.
Research on Path Planning of Improved RRT Algorithm in Complex Environment
Traditional fast expanding random tree(RRT)algorithm has many redundant nodes and low success rate in path planning in complex environment.It proposes an improved RRT path planning algorithm ED-RRT based on the combination of entry detection strategy and heuristic dynamic circular sampling strategy.Firstly,the algorithm proposes a range-seeking strate-gy to quickly find the accessible path in a complex environment.At the same time,heuristic strategy is adopted to optimize the se-lection of random points,accelerate the effective planning speed and reduce the generation of redundant branches.Secondly,the greedy algorithm is introduced to optimize the path and solve the problem of too many redundant points.Simulation results show that the proposed algorithm has obvious advantages over the traditional RRT algorithm and bias-RRT algorithm in terms of iter-ation time,iteration times,path length and path planning.

Path PlanningFast Search Random TreeEntrance Finding StrategyHeuristic Strategy

葛超、王北辰、姚征、刘刚

展开 >

华北理工大学电气工程学院,河北唐山 063210

北京自来水集团有限责任公司大兴分公司,北京 100162

路径规划 快速搜索随机树 入口寻找策略 启发式策略

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)