首页|模型失配下风力涡轮机故障数据驱动诊断策略

模型失配下风力涡轮机故障数据驱动诊断策略

扫码查看
水平轴风力涡轮机系统在控制模型与实际数据失配工况下,系统任何运行故障事件都会导致系统偏离其目标并造成性能恶化的问题.因此,提出一种模型失配下的风力涡轮机故障的数据驱动诊断策略,以在存在模型-现实不匹配和建模误差效应的工况下,能够实现优良的故障诊断性能.首先建立水平轴风力涡轮机系统的基准模型,并对系统故障场景和故障敏感度分析进行介绍,接着利用数据驱动诊断策略构建系统的故障估计器,并提出了 Takagi-Sugeno模糊(TS FS)诊断策略和神经网络非线性自动回归外源输入(NARX NN)诊断策略,最后通过仿真和HIL硬件在环实验对所提出的风力涡轮机故障的数据驱动诊断策略进行了验证,并与已有的非线性几何方法自适应滤波器(NLGA-AF)、模糊递归识别(RFS)和滑模观察器(SMO)进行了比较,实验结果表明,所提出的诊断方案能够更好地应对存在模型-现实不匹配和建模误差效应的工况,并保持优良的鲁棒性和可靠性.
Data Driven Diagnosis Method for Wind Turbine Faults Under Model Mismatch
Under the condition of mismatch between control model and actual data of horizontal axis wind turbine system,any operation failure event of the system will cause the system to deviate from its target and cause performance deterioration.There-fore,a data-driven fault diagnosis strategy for wind turbine under model mismatch is proposed to achieve excellent fault diagno-sis performance under the conditions of model reality mismatch and modeling error effect.Firstly,the benchmark model of the horizontal axis wind turbine system is established,and the system fault scenarios and fault sensitivity analysis are introduced.Then,the fault estimator of the system is constructed using data-driven diagnosis strategy,and Takagi Sugeno fuzzy(TS FS)di-agnosis strategy and neural network nonlinear automatic regression exogenous input(NARX NN)diagnosis strategy are pro-posed,Finally,the proposed data-driven diagnosis strategy for wind turbine faults is verified by simulation and HIL hardware in the loop experiment,and compared with the existing nonlinear geometry adaptive filter(NLGA-AF),fuzzy recursive identifi-cation(RFS)and sliding mode observer(SMO).The experimental results show that the proposed diagnosis scheme can better deal with the conditions with model reality mismatch and modeling error effects.And maintain excellent robustness and reliability.

Wind TurbineModel MismatchData Driven DiagnosisFault DiagnosisRobustness

陈昉、赵嘉媛

展开 >

湖北三峡职业技术学院机电工程学院,湖北宜昌 443000

风力涡轮机 模型失配 数据驱动诊断 故障诊断 鲁棒性

2024

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2024.406(12)