首页|基于PSO与BP神经网络的磁共振成像设备故障诊断研究

基于PSO与BP神经网络的磁共振成像设备故障诊断研究

扫码查看
针对磁共振成像设备故障诊断准确性和效率低的问题,提出一种基于粒子群优化算法与反向传播神经网络结合邓普斯特-谢弗证据理论的故障诊断模型.该模型通过粒子群优化算法优化反向传播神经网络的参数,并结合邓普斯特-谢弗证据理论融合多传感器数据.实验结果表明,10 种故障类型下所提模型的故障检测正确率为100%,对10 种不同类型故障的平均检测准确率达96.2%,单样本检测耗时为17.5 ms.
Research on fault diagnosis of magnetic resonance imaging equipment based on PSO and BP neural network
Aiming at the low accuracy and efficiency in fault diagnosis of magnetic resonance imaging equipment,a fault diagnosis method based on particle swarm optimization algorithm and back propagation neural network combined with Dempster-Schafer evidence theory is proposed.This method optimizes the parameters of back propagation neural network by particle swarm algorithm and fuses multi-sensor data by combining Dempster-Schafer evidence theory.Experimental results show that the average detection accuracy of the proposed model for 10 types of faults is 96.2%,the single sample detection time is 17.5 ms,and the accuracy rate reaches 100%in the detection of 10 types of faults.

PSO algorithmBP neural networkmagnetic resonance imaging equipmentfault diagnosisDemp-ster-Shafer evidence theory

方佩玺、张姚昕、赵媛

展开 >

上海交通大学医学院附属新华医院,上海 200092

粒子群优化算法 反向传播神经网络 磁共振成像设备 故障诊断 邓普斯特-谢弗证据理论

2025

机械设计与制造工程
南京东南大学出版社有限公司

机械设计与制造工程

影响因子:0.387
ISSN:1672-1616
年,卷(期):2025.54(1)