首页|形态学滤波和HHT变换在轮轨故障诊断中的应用

形态学滤波和HHT变换在轮轨故障诊断中的应用

扫码查看
针对现有轮轨故障诊断装置结构复杂、成本高且实时性差等问题,提出了一种基于轴箱振动加速度响应的轮轨故障诊断方法.首先通过形态学滤波器对轴箱振动信号进行降噪处理,然后运用集合经验模态分解(EEMD)将处理后的信号分解得到若干阶固有模态函数(IMF),再依据能量熵增量的相对大小剔除IMF分量中的虚假分量,对剩余的有效分量进行希尔伯特-黄变换(HHT)得到Hilbert谱.研究结果表明,车辆运行在正常工况与不同类型轮轨故障工况下,轴箱振动加速度的Hilbert谱有显著的差异,因此依据Hilbert谱的特征可有效诊断轮轨故障.
Application of morphological filter and HHT transform in wheel rail fault diagnosis
Aiming at complex structure,high cost and poor real-time performance of the existing wheel-rail fault diagnosis device,a wheel-rail fault diagnosis method based on transmission box vibration acceleration re-sponse is proposed.Firstly,the transmission box vibration signal is denoised by morphological filter,and then the processed signal is decomposed by ensemble empirical mode decomposition(EEMD)to obtain several intrin-sic mode functions(IMF),and then the false components in the IMF components are eliminated according to the relative magnitude of the energy entropy increment,and the Hilbert-Huang transform(HHT)is used to obtain the Hilbert spectrum by the remaining effective components.The results show that there is a significant difference between the Hilbert spectrum of transmission box acceleration under normal conditions and different types of wheel-rail faults,so the Hilbert spectrum can be used to effectively diagnose wheel-rail faults.

wheel rail faultaxle box vibration accelerationmorphological filteringensemble empirical mode decompositionHilbert-Huang transform

李大柱

展开 >

中铁第一勘察设计院集团有限公司,陕西 西安 710043

轮轨故障 轴箱振动加速度 形态学滤波 集合经验模态分解 希尔伯特-黄变换

2025

机械设计与制造工程
南京东南大学出版社有限公司

机械设计与制造工程

影响因子:0.387
ISSN:1672-1616
年,卷(期):2025.54(1)