首页|基于AL-Kriging模型及PSO算法的桥机主梁优化

基于AL-Kriging模型及PSO算法的桥机主梁优化

扫码查看
为解决有限元模型和群智能算法相结合的起重机结构优化计算的计算成本昂贵的问题,该文基于AL-Kriging代理模型和粒子群智能优化算法构建了起重机主梁优化方法,在该方法中通过EFF学习函数选择优化所需的有效样本点,从而用较少的高保真计算样本构建出满足精度要求的代理模型,再通过PSO算法以及所构建好的代理模型完成结构优化.通过工程案例验证证明,在取得同样计算结果的情况下,与基于静态Kriging模型相比,该方法的优化时间节省了 70%,调用样本数仅为静态代理模型的 27%,证明了所构建的优化方法是可行和有效的.
Main Beam Optimization of Overhead Crane based on AL-Kriging Surrogate Model and PSO Algorithm
In order to solve the expensive calculation cost of crane structure optimization combining finite element model with swarm intelligence algorithm,a crane girder optimization method is constructed in this paper based on active learning Kriging surrogate model and particle swarm intelligence optimization algorithm.In this method,the effective sample points required for optimization is selected by the EFF active learning function,so as to construct a surrogate model that meets the accuracy re-quirements with as fewer high-fidelity samples as possible.Finally,the structural optimization is completed based on the con-structed surrogate model through the particle swarm optimization algorithm.Through the engineering case,under the condition of obtaining the same optimization results,the optimization cost time could be saved by about 70%compared with the static Kriging surrogate model,the number of call samples is only 27%of the static surrogate model,which verifies the feasibility and effectiveness of the established optimization method.

crane girderKriging surrogate modelEFF active learningintelligent optimization

肖辉、范小宁

展开 >

太原科技大学 机械工程学院,山西 太原 030024

起重机主梁 Kriging代理模型 EFF学习函数 智能优化

2024

机械研究与应用
甘肃省机械科学研究院

机械研究与应用

影响因子:0.267
ISSN:1007-4414
年,卷(期):2024.37(2)
  • 10