首页|基于免疫相关基因标记的胃癌预后预测模型的构建和验证

基于免疫相关基因标记的胃癌预后预测模型的构建和验证

扫码查看
目的 开发一种基于免疫特征的预后预测模型,用于精准识别胃癌免疫敏感人群,以期改进联合免疫疗法并揭示肿瘤免疫交互作用的潜在分子特征.方法 使用单样本基因集富集分析(ssGSEA)对胃癌免疫景观进行定量评估,并将其划分为具有不同免疫浸润丰度的集群.利用最小绝对收缩和选择算法(LASSO)及Cox回归模型对候选基因进行逐步回归,以构建胃癌预后预测模型并进行外部验证.采用Kaplan-Meier分析、受试者工作特征(ROC)曲线、列线图、校准曲线等评估模型的预测能力.采用IMvigor210队列以及"oncoPredict"包预测免疫治疗应答及药物敏感性.结果 基于28个免疫相关基因集的免疫状态定量分析确定并验证了 2个具有不同预后和免疫浸润模式的功能簇.识别和构建由6个免疫相关基因组成的特征风险模型,并将其划分为具有不同临床病理特征、预后和免疫背景的风险亚群.高风险亚群具有较差的预后,且伴有免疫抑制、高水平的静止细胞亚群浸润、低频基因突变和较低的免疫检查点分子表达,这些特征与免疫逃逸和预后不良密切相关.不同风险组之间的半最大抑制浓度(IC50)存在显著差异,这能够有效识别"热肿瘤"及免疫治疗敏感药物的筛选.结论 建立并验证基于免疫特征的新型风险模型,其在预测胃癌预后和指导临床肿瘤治疗方面显示出潜在的运用价值.
Construction and Validation of a Prognostic Prediction Model for Gastric Cancer Based on Immune-Related Gene Signatures
Objective To develop a prognostic risk model based on immune features for precise stratification of gastric cancer(GC),with the aim of improving combined immunotherapy and re-vealing molecular features of tumor-immune interactions.Methods The immune landscape of GC was quantitatively evaluated using single-sample gene set enrichment analysis(ssGSEA),and pa-tients were classified into clusters with different immune infiltration abundances.The least abso-lute shrinkage and selection operator(LASSO)Cox regression analysis was then utilized to per-form stepwise regression on candidate genes to develop a risk model and conduct external valida-tion.Kaplan Meier analysis,receiver operating characteristic(ROC)curve,nomogram,calibration curve,etc.were performed to evaluate the predictive ability of the model.In addition,the IMvig-or210 cohorts and"oncoPredict"packet were used to predict immunotherapy responses and drug sensitivity.Results The study identified and validated two functional clusters with different prog-nosis and immune infiltration patterns based on 28 immune gene sets,and verified their heteroge-neous immune landscapes.Subsequently,a signature composed of six immune-related genes was determined and constructed,and further divided into risk subgroups with different clinical and pathological features,prognosis,and immune landscape.The high-risk subgroup was characterized by immunosuppression,high levels of static cell subsets infiltration,low-frequency gene muta-tions,and lower immune checkpoint molecule expression levels,which is closely related to im-mune escape and poor prognosis.There are significant differences in half maximal inhibitory con-centration(IC50)in risk groups,which can effectively distinguish"hot tumors"from"cold tumors",which is of great significance for guiding the selection of immunotherapy drugs.Conclu-sion The study established and validated a new classification based on immune characteristics that shows unique value in predicting GC prognosis and guiding the screening of potential drugs.

gastric cancertumor microenvironmentnomogramimmunotherapyimmune checkpoint

胡震、赵绍基、祁玉忠、王光熙、孙开宇、吴文辉

展开 >

中山大学附属第七医院消化医学中心,深圳 518107

中山大学附属第一医院胃肠外科,广州 510080

胃癌 肿瘤微环境 列线图 免疫治疗 免疫检查点

国家自然科学基金广州市科技计划深圳市医疗卫生三名工程项目

822036422023A04J2212SZSM201911010

2024

南昌大学学报(医学版)
南昌大学

南昌大学学报(医学版)

CSTPCD
影响因子:1.008
ISSN:2095-4727
年,卷(期):2024.64(2)
  • 44