首页|人工智能预测炎症性肠病生物制剂治疗应答的应用进展

人工智能预测炎症性肠病生物制剂治疗应答的应用进展

扫码查看
早期识别炎症性肠病(IBD)的治疗反应是临床面临的挑战之一.文章阐述人工智能(AI)在IBD生物制剂治疗应答中的研究进展,涵盖多种机器学习及深度学习算法在抗肿瘤坏死因子(TNF)-α制剂、乌思奴单抗(UST)和维得利珠单抗(VDZ)治疗IBD效果预测模型中的应用.发现临床特征及实验室检查是最常见的预测因子.相较于仅纳入这两类因子的模型,结合内镜下评分、多项组学及影像学数据的模型表现更佳.随机森林(RF)是最常用的AI模型,人工神经网络(ANN)次之,两者的模型性能相近.AI 模型在预测治疗后临床症状、炎症指标及内镜下黏膜表现中均展现出良好的性能,但预测结局的指标较单一,缺乏更系统的疗效评估.此外,随着透壁愈合、组织学缓解等治疗目标逐渐进入研究视野,期待AI辅助探索最佳治疗结局,挖掘更多潜在的预测因子应用于临床.
Artificial Intelligence in Predicting Therapeutic Responses to Biologics for Inflammatory Bowel Disease:a Review
Early identification of therapeutic responses to inflammatory bowel disease(IBD)is one of the challenges in clinical practice.This article reviews how artificial intelligence(AI)has been applied in predicting therapeutic responses to IBD biologics,covering the application of various machine learning and deep learning algorithms in efficacy prediction models for tumor necrosis factor(TNF)-α agents,ustekinumab(UST),and vedolizumab(VDZ).It has been found that clinical characteristics and laboratory tests are the most common predictive factors,and that compared to models that only include these two factors,models that incorporate endoscopic scores,multi-omics,and imaging data demonstrate better performance.Random forest(RF)is the most commonly used AI model,followed by artificial neural networks(ANN),with similar model performance for both.AI models have demonstrated good performance in predicting clinical symptoms,inflammatory markers,and endoscopic mucosal manifestations after treatment.However,the indicators for predicting outcomes are relatively limited,lacking a more systematic evaluation of treatment efficacy.Additionally,as treatment goals such as transmural healing and histological remission gradually enter the research spotlight,there is anticipation for AI to assist in exploring optimal treatment outcomes and uncovering more potential predictive factors for clinical application.

ulcerative colitisCrohn's diseaseartificial intelligenceanti-tumor necrosis factor-α therapyustekinumabvedolizumabtherapyprediction model

杨纯依、杨婷婷、胡月、梁琦、曲波

展开 >

哈尔滨医科大学第二附属医院消化内科,哈尔滨 150086

溃疡性结肠炎 克罗恩病 人工智能 抗肿瘤坏死因子治疗 乌思奴单抗 维得利珠单抗 治疗 预测模型

2024

南昌大学学报(医学版)
南昌大学

南昌大学学报(医学版)

CSTPCD
影响因子:1.008
ISSN:2095-4727
年,卷(期):2024.64(6)