首页|基于知识塔群的智慧家庭场景自生成技术研究

基于知识塔群的智慧家庭场景自生成技术研究

扫码查看
当前大模型等人工智能技术的出现正在加速智能家居行业的颠覆式发展.然而,现有的智慧家庭系统仍存在知识碎片化、场景自适应能力差、个性化服务能力弱等问题.因此,提出了一种基于知识塔群的智慧家庭场景自生成技术,通过建立家电领域"场景-品类-产品-部件-零件"层次化本体概念体系,构建基于知识塔群的大模型融合增强和协同优化机制,提升大模型在智慧家庭场景应用的可靠性及泛化能力;通过对"人-设备-环境-空间"的多维信息感知,构建基于图神经网络、迁移学习的用户精准需求画像以及场景自编排引擎,提升智慧家庭场景多样化任务自适应和自学习能力,为用户主动提供个性化服务.测试结果表明,该技术下场景生成交互成功率超过95%.
Self-generation of smart home scenarios based on knowledge tower clusters
The rise of large AI models is rapidly reshaping the smart home sector.However,these systems often struggle with scattered knowledge,scene adaptability,and personalized services.To overcome these hurdles,this paper presents a smart home scenario self-generation technique based on a knowledge tower cluster.We design a layered appliance ontology and integrate large models using a synergistic optimization approach rooted in the tower cluster's knowledge graph,bolstering model reliability and generalization in smart homes.By capturing multi-dimensional inputs from users,devices,environments,and spaces,we create precise user profiles and autonomous scene organizers with graph neural networks and transfer learning.This enhances task adaptability and self-learning,enabling proactive,customized user experiences.Testing reveals that our approach achieves a scenario generation accuracy of over 95%.

Knowledge graphIncremental learningIntent recognitionScene generation

杜永杰、王杰、陈天璐、马晓然

展开 >

青岛海尔科技有限公司 山东 青岛 266100

数字家庭网络国家工程研究中心 山东 青岛 266100

山东省智慧家庭人工智能与自然交互研究重点实验室 山东 青岛 266100

知识图谱 增量学习 意图识别 场景生成

2024

家电科技
中国家用电器研究院

家电科技

影响因子:0.086
ISSN:1672-0172
年,卷(期):2024.(z1)