首页|卷积神经网络的空调系统故障诊断可解释研究

卷积神经网络的空调系统故障诊断可解释研究

扫码查看
深度学习,特别是卷积神经网络(Convolutional neural networks,CNN),在建筑能源系统受到广泛关注.在空气处理机组(Air handling unit,AHU)的故障诊断领域中,CNN的诊断性能的有效性和适用性需要进一步验证.同时,CNN故障诊断模型缺乏可解释性,不利于其在实际工程的推广应用.为解决以上问题,基于公开的ASHRAE RP-1312 AHU故障数据,利用CNN构建了故障诊断模型,同时基于逐层相关传播方法对CNN模型进行解释.结果表明,基于CNN的诊断模型展现出较好的适用性,平均诊断正确率为99.94%.逐层相关传播方法为CNN模型提供了良好的可解释性,识别出模型在决策过程中的诊断机制.最后,通过对卷积层数、学习率以及β参数方面深入分析模型参数对解释结果的影响.
Interpretation study on convolutional neural networks-based fault diagnosis of air conditioning system
Deep learning,particularly convolutional neural networks(CNN),has garnered significant attention in the field of building energy systems.In the context of fault diagnosis for air handling units(AHU),the effectiveness and applicability of CNN's diagnostic performance require further validation.Additionally,the lack of interpretability in CNN fault diagnosis models hinders their broader application in practical engineering.To address these issues,utilized the publicly available ASHRAE RP-1312 AHU fault data to develop a fault diagnosis model based on CNN,and employed the layer-wise relevance propagation(LRP)method to interpret the CNN model.The results demonstrated that the CNN-based diagnostic model exhibits good applicability,with an average diagnostic accuracy of 99.94%.The LRP method provides strong interpretability for the CNN model,and identifies the diagnosis mechanism of the model in the decision-making process.Finally,an in-depth analysis was conducted on the impact of model parameters such as the number of convolutional layers,learning rate and β parameter on the interpretation results.

Air handling unitConvolutional neural networkFault diagnosisLayer-wise relevance propagationInterpretation

熊成龙、李冠男、劳春峰、李伟、王东岳、代传民、李锟

展开 >

城市建设学院,武汉科技大学 湖北 武汉 430065

湖北省城市更新工程研究中心,武汉科技大学 湖北 武汉 430065

青岛海尔空调器有限总公司 山东 青岛 266101

青岛海尔智能技术研发有限公司 山东 青岛 266101

展开 >

空气处理机组 卷积神经网络 逐层相关传播 故障诊断 可解释

2024

家电科技
中国家用电器研究院

家电科技

影响因子:0.086
ISSN:1672-0172
年,卷(期):2024.(z1)