首页|基于深度学习的骨髓细胞图像分类研究

基于深度学习的骨髓细胞图像分类研究

扫码查看
当前,造血系统疾病的诊治面临着诸多挑战,其中对骨髓细胞形态与数量的精确分析是实现准确诊断的关键环节.传统的检查手段主要依赖于人工操作,效率和精度受到制约,难以满足现代医疗诊断的严苛要求.针对骨髓细胞图像分类的挑战,本研究利用深度学习技术,优选了 Vision Transformer(ViT)作为基础模型,对其分类进行深入研究.为进一步优化模型的分类性能,创新设计了一个基于卷积的Input Embedding模块.该模块巧妙地结合了卷积神经网络的优势和注意力机制的长处,从而更有效地捕捉和编码骨髓细胞图像中的关键特征.通过融合Input Embedding模块,改进后的模型(Rc-ViT)在处理各种骨髓细胞图像时展现出了更高的精确性.实验结果表明,与原ViT模型相比,Rc-ViT的准确率提升了 0.024 9,性能显著增强.特别是在处理数据量较少的细胞类别时,精确率和召回率分别提升了 0.036 0和0.150 0,不仅验证了该方法在增强模型对少数类别细胞识别上的有效性,而且减少了数据量不足对特征学习的影响.此外,该模型在细胞分类的准确性和一致性方面也取得了显著进步,为医疗诊断的可靠性和重复性提供了有力支持.
Research on Bone Marrow Cell Image Classification Based on Deep Learning
Currently,the diagnosis and treatment of hematopoietic system diseases face numerous challenges,among which precise analysis of the morphology and quantity of bone marrow cells is a crucial step for accurate diagnosis.However,traditional examination methods primarily rely on manual operation,which is constrained by efficiency and accuracy,making it difficult to meet the stringent requirements of modern medical diagnosis.In response to the challenges of bone marrow cell image classification,deep learning tech-nology is employed in this research,with Vision Transformer(ViT)selected as the base model for further research into its classification capabilities.To further optimize the model's classification performance,an innovative convolution-based Input Embedding module is designed.This module cleverly combines the strengths of convolutional neural networks and the attention mechanism,thereby more ef-fectively capturing and encoding key features in bone marrow cell images.By integrating the Input Embedding module,the improved model(Rc-ViT)demonstrates higher accuracy in processing various bone marrow cell images.Experimental results show that compared to the original ViT model,the accuracy of Rc-ViT has increased by 0.024 9,indicating a significant performance enhancement.Espe-cially when dealing with cell categories with limited data,the precision and recall rates have increased by 0.036 0 and 0.150 0,respec-tively.This remarkable improvement not only verifies the effectiveness of this method in enhancing the model's recognition of minority cell categories but also reduces the impact of insufficient data on feature learning.Furthermore,this model has made significant progress in the accuracy and consistency of cell classification,providing strong support for the reliability and repeatability of medical diagnosis.

Deep learningBone marrow cell imagesVision Transformer modelAttention mechanism

王海宝、刘红岩、魏志、周省邦、龙子晴、元绍钰、尹森炎、张克智、高恩双

展开 >

南宁师范大学物理与电子学院,广西信息功能材料与智能信息处理重点实验室,南宁,530100

山东省第二人民医院消化内科,济南,250022

南宁师范大学环境与生命科学学院,南宁,530100

深度学习 骨髓细胞图像 Vision Transformer模型 注意力机制

2024

基因组学与应用生物学
广西大学

基因组学与应用生物学

CSTPCD北大核心
影响因子:1.108
ISSN:1674-568X
年,卷(期):2024.43(11)