首页|基于改进型Transformer模型的光伏出力实时估计方法研究

基于改进型Transformer模型的光伏出力实时估计方法研究

扫码查看
对集中式光伏电站的各个逆变器集群进行功率估计,得到光伏集群的理想状态下的出力值,可为整个电站的全面态势感知和实时监测集电线光伏系统集群运行状态的评估提供基础数据。针对光伏系统出力的估计需求,提出了一种基于改进型Transformer模型的光伏输出实时估计方法,首先采集系统运行数据与同周期站址地气象实测数据,然后通过对系统异常时段数据进行清洗与数据集成等方法对原始数据进行预处理,最后基于改进型Transformer模型与预处理后数据集实现对光伏出力的实时估计。采用实际集中式地面光伏电站数据对所提方法进行了测试分析,结果显示,所提出的基于改进型Transformer模型的光伏出力实时估计方法的平均绝对误差(MAE)和均方根误差(RMSE)分别为 0。021 与 0。186,优于传统方法,验证了所提方法估计性能的可行性和准确性,可为光伏电站运行状态评估提供理想状态下的出力数据,进而为智能光伏运维提供基础数据。
Research on Real-time Estimation Method of PV Output Based on Improved Transformer Model
The power estimation of each inverter of centralized photovoltaic(PV)power station can obtain the ideal output value of the PV cluster,which can provide basic data for the overall situational awareness of the whole power station and the evaluation of the real-time monitoring of the operating state of the PV system cluster.To meet the demand of PV system output estimation,a real-time PV output estimation method based on improved Transformer model is proposed.First,the system operation data and the meteorological data of the same period are collected,and then the original data is pre-processed by cleaning the data in system abnormal period and data integration.Finally,real-time estimation of PV output is realized based on the improved Transformer model and the pre-processed data set.The data of an actual centralized PV power station is used to test and analyze the proposed method.The results show that the mean absolute error(MAE)and root mean square error(RMSE)of the proposed real-time PV output estimation method based on the improved Transformer model are 0.021 and 0.186,respectively,which is better than that of the traditional methods.The feasibility and accuracy of the estimation performance of the proposed method are verified.Thus the proposed method can provide ideal output data for the evaluation of the operating state of PV power stations,and then provide basic data for intelligent PV operation and maintenance.

PV systempower estimationITransformer-TCN model

谢荣怡、梁春、林倍民、欧阳育

展开 >

广西北部湾陆海新能源股份有限公司,南宁 530022

浙江工业大学分布式能源与微网研究所,杭州 310012

光伏系统 出力估计 ITransformer-TCN模型

2025

价值工程
河北省技术经济管理现代化研究会

价值工程

影响因子:0.559
ISSN:1006-4311
年,卷(期):2025.44(1)