首页|改善机械故障监测和维护的人工智能方法

改善机械故障监测和维护的人工智能方法

扫码查看
工业 4。0 时代,传统维护方式难以满足机械故障监测的高效、精准需求。本研究针对预测性维护(PdM),利用工业物联网(IIoT)技术自动采集数据。构建人工神经网络(ANN)模型,分析S型激活函数,采用均方误差(MSE)等评估性能。针对数据不均衡,结合专家知识分析。实验显示,ANN模型准确度 87%,提升维护效率与准确性。PdM策略优势显著,为制造业提供高效、低成本维护方案,奠定科学评估基础,有望推动机械故障监测与维护领域进步。
Artificial Intelligence Methods for Improving Mechanical Fault Monitoring and Maintenance
In the era of Industry 4.0,traditional maintenance methods are difficult to meet the efficient and accurate requirements of mechanical fault monitoring.This study focuses on predictive maintenance(PdM)and utilizes industrial Internet of Things(IIoT)technology to automatically collect data,constructs an artificial neural network(ANN)model,analyzes the S-shaped activation function,and evaluates performance using mean square error(MSE)and other metrics.Data imbalance is analyzed combined with expert knowledge.The experiment shows that the ANN model has an accuracy of 87%,improving maintenance efficiency and accuracy.The PdM strategy has significant advantages,providing efficient and low-cost maintenance solutions for the manufacturing industry,laying a scientific evaluation foundation.And it is expected to promote progress in the field of mechanical fault monitoring and maintenance.

fault diagnosisartificial intelligencemechanical maintenancequality controlforecast

康晨祺

展开 >

青岛城市学院,青岛 251600

故障诊断 人工智能 机械维护 质量控制 预测

2025

价值工程
河北省技术经济管理现代化研究会

价值工程

影响因子:0.559
ISSN:1006-4311
年,卷(期):2025.44(1)